Do you want to publish a course? Click here

Levitation of the quantum Hall extended states in the $Bto$ 0 limit

93   0   0.0 ( 0 )
 Added by Ludwig Schweitzer
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the fate of the quantum Hall extended states within a continuum model with spatially correlated disorder potentials. The model can be projected onto a couple of the lowest Landau bands. Levitation of the $n=0$ critical states is observed if at least the two lowest Landau bands are considered. The dependence on the magnetic length $l_B=(hbar/(eB))^{1/2}$ and on the correlation length of the disorder potential $eta$ is combined into a single dimensionless parameter $hateta=eta/l_B$. This enables us to study the behavior of the critical states for vanishing magnetic field. In the two Landau band limit, we find a disorder dependent saturation of the critical states levitation which is in contrast to earlier propositions, but in accord with some experiments.



rate research

Read More

The nonlinear Hall effect is an unconventional response, in which a voltage can be driven by two perpendicular currents in the Hall-bar measurement. Unprecedented in the family of the Hall effects, it can survive time-reversal symmetry but is sensitive to the breaking of discrete and crystal symmetries. It is a quantum transport phenomenon that has deep connection with the Berry curvature. However, a full quantum description is still absent. Here we construct a quantum theory of the nonlinear Hall effect by using the diagrammatic technique. Quite different from nonlinear optics, nearly all the diagrams account for the disorder effects, which play decisive role in the electronic transport. After including the disorder contributions in terms of the Feynman diagrams, the total nonlinear Hall conductivity is enhanced but its sign remains unchanged for the 2D tilted Dirac model, compared to the one with only the Berry curvature contribution. We discuss the symmetry of the nonlinear conductivity tensor and predict a pure disorder-induced nonlinear Hall effect for point groups $C_{3}$, $C_{3h}$, $C_{3v}$, $D_{3h}$, $D_{3}$ in 2D, and $T$, $T_{d}$, $C_{3h}$, $D_{3h}$ in 3D. This work will be helpful for explorations of the topological physics beyond the linear regime.
A seminal gedankenexperiment by Laughlin describes the charge transport in quantum Hall systems via the pumping of flux. Here, we propose an optical scheme which probes and manipulates quantum Hall systems in a similar way: When light containing orbital angular momentum interacts with electronic Landau levels, it acts as a flux pump which radially moves the electrons through the sample. We investigate this effect for a graphene system with Corbino geometry, and calculate the radial current in the absence of any electric potential bias. Remarkably, the current is robust against the disorder which is consistent with the lattice symmetry, and in the weak excitation limit, the current shows a power-law scaling with intensity characterized by the novel exponent 2/3.
194 - R. A. Romer , C. Sohrmann 2008
We report on numerical studies into the interplay of disorder and electron-electron interactions within the integer quantum Hall regime, where the presence of a strong magnetic field and two-dimensional confinement of the electronic system profoundly affects thermodynamic and transport properties. We emphasise the behaviour of the electronic compressibility, the local density of states, and the Kubo conductivity. Our treatment of the electron-electron interactions relies on the Hartree-Fock approximation so as to achieve system sizes comparable to experimental situations. Our results clearly exhibit manifestations of various interaction-mediated features, such as non-linear screening, local charging, and g-factor enhancement, implying the inadequacy of independent-particle models for comparison with experimental results.
93 - F.Evers , A.Mildenberger , 2002
Statistical properties of critical wave functions at the spin quantum Hall transition are studied both numerically and analytically (via mapping onto the classical percolation). It is shown that the index $eta$ characterizing the decay of wave function correlations is equal to 1/4, at variance with the $r^{-1/2}$ decay of the diffusion propagator. The multifractality spectra of eigenfunctions and of two-point conductances are found to be close-to-parabolic, $Delta_qsimeq q(1-q)/8$ and $X_qsimeq q(3-q)/4$.
Using scanning tunneling spectroscopy in ultra-high vacuum at low temperature (T = 0.3 K) and high magnetic fields (B < 12 T), we directly probe electronic wave functions across an integer quantum Hall transition. In accordance with theoretical predictions, we observe the evolution from localized drift states in the insulating phases to branched extended drift states at the quantum critical point. The observed microscopic behavior close to the extended state indicates points of localized quantum tunneling, which are considered to be decisive for a quantitative description of the transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا