No Arabic abstract
Using scanning tunneling spectroscopy in ultra-high vacuum at low temperature (T = 0.3 K) and high magnetic fields (B < 12 T), we directly probe electronic wave functions across an integer quantum Hall transition. In accordance with theoretical predictions, we observe the evolution from localized drift states in the insulating phases to branched extended drift states at the quantum critical point. The observed microscopic behavior close to the extended state indicates points of localized quantum tunneling, which are considered to be decisive for a quantitative description of the transition.
We investigate the entanglement spectra arising from sharp real-space partitions of the system for quantum Hall states. These partitions differ from the previously utilized orbital and particle partitions and reveal complementary aspects of the physics of these topologically ordered systems. We show, by constructing one to one maps to the particle partition entanglement spectra, that the counting of the real-space entanglement spectra levels for different particle number sectors versus their angular momentum along the spatial partition boundary is equal to the counting of states for the system with a number of (unpinned) bulk quasiholes excitations corresponding to the same particle and flux numbers. This proves that, for an ideal model state described by a conformal field theory, the real-space entanglement spectra level counting is bounded by the counting of the conformal field theory edge modes. This bound is known to be saturated in the thermodynamic limit (and at finite sizes for certain states). Numerically analyzing several ideal model states, we find that the real-space entanglement spectra indeed display the edge modes dispersion relations expected from their corresponding conformal field theories. We also numerically find that the real-space entanglement spectra of Coulomb interaction ground states exhibit a series of branches, which we relate to the model state and (above an entanglement gap) to its quasiparticle-quasihole excitations. We also numerically compute the entanglement entropy for the nu=1 integer quantum Hall state with real-space partitions and compare against the analytic prediction. We find that the entanglement entropy indeed scales linearly with the boundary length for large enough systems, but that the attainable system sizes are still too small to provide a reliable extraction of the sub-leading topological entanglement entropy term.
We consider the trial wavefunctions for the Fractional Quantum Hall Effect (FQHE) that are given by conformal blocks, and construct their associated edge excited states in full generality. The inner products between these edge states are computed in the thermodynamic limit, assuming generalized screening (i.e. short-range correlations only) inside the quantum Hall droplet, and using the language of boundary conformal field theory (boundary CFT). These inner products take universal values in this limit: they are equal to the corresponding inner products in the bulk 2d chiral CFT which underlies the trial wavefunction. This is a bulk/edge correspondence; it shows the equality between equal-time correlators along the edge and the correlators of the bulk CFT up to a Wick rotation. This approach is then used to analyze the entanglement spectrum (ES) of the ground state obtained with a bipartition AcupB in real-space. Starting from our universal result for inner products in the thermodynamic limit, we tackle corrections to scaling using standard field-theoretic and renormalization group arguments. We prove that generalized screening implies that the entanglement Hamiltonian H_E = - log {rho}_A is isospectral to an operator that is local along the cut between A and B. We also show that a similar analysis can be carried out for particle partition. We discuss the close analogy between the formalism of trial wavefunctions given by conformal blocks and Tensor Product States, for which results analogous to ours have appeared recently. Finally, the edge theory and entanglement spectrum of px + ipy paired superfluids are treated in a similar fashion in the appendix.
We investigate the fate of the quantum Hall extended states within a continuum model with spatially correlated disorder potentials. The model can be projected onto a couple of the lowest Landau bands. Levitation of the $n=0$ critical states is observed if at least the two lowest Landau bands are considered. The dependence on the magnetic length $l_B=(hbar/(eB))^{1/2}$ and on the correlation length of the disorder potential $eta$ is combined into a single dimensionless parameter $hateta=eta/l_B$. This enables us to study the behavior of the critical states for vanishing magnetic field. In the two Landau band limit, we find a disorder dependent saturation of the critical states levitation which is in contrast to earlier propositions, but in accord with some experiments.
We use dynamic scanning capacitance microscopy (DSCM) to image compressible and incompressible strips at the edge of a Hall bar in a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime. This method gives access to the complex local conductance, Gts, between a sharp metallic tip scanned across the sample surface and ground, comprising the complex sample conductance. Near integer filling factors we observe a bright stripe along the sample edge in the imaginary part of Gts. The simultaneously recorded real part exhibits a sharp peak at the boundary between the sample interior and the stripe observed in the imaginary part. The features are periodic in the inverse magnetic field and consistent with compressible and incompressible strips forming at the sample edge. For currents larger than the critical current of the QHE break-down the stripes vanish sharply and a homogeneous signal is recovered, similar to zero magnetic field. Our experiments directly illustrate the formation and a variety of properties of the conceptually important QHE edge states at the physical edge of a 2DEG.
The boundary between the classical and quantum worlds has been intensely studied. It remains fascinating to explore how far the quantum concept can reach with use of specially fabricated elements. Here we employ a tunable flux qubit with basis states having persistent currents of 1$ mu$A carried by a billion electrons. By tuning the tunnel barrier between these states we see a cross-over from quantum to classical. Released from non-equilibrium, the system exhibits spontaneous coherent oscillations. For high barriers the lifetime of the states increases dramatically while the tunneling period approaches the phase coherence time and the classical regime is reached.