Do you want to publish a course? Click here

Observation of Conduction Band Satellite of Ni Metal by 3p-3d Resonant Inverse Photoemission Study

362   0   0.0 ( 0 )
 Added by Yasuhisa Tezuka
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

Resonant inverse photoemission spectra of Ni metal have been obtained across the Ni 3$p$ absorption edge. The intensity of Ni 3$d$ band just above Fermi edge shows asymmetric Fano-like resonance. Satellite structures are found at about 2.5 and 4.2 eV above Fermi edge, which show resonant enhancement at the absorption edge. The satellite structures are due to a many-body configuration interaction and confirms the existence of 3$d^8$ configuration in the ground state of Ni metal.



rate research

Read More

Resonant photoemission (RPES) at the Ce 3d -> 4f threshold has been performed for alpha-like compound CeNi_2 with extremely high energy resolution (full width at half maximum < 0.2 eV) to obtain bulk-sensitive 4f spectral weight. The on-resonance spectrum shows a sharp resolution-limited peak near the Fermi energy which can be assigned to the tail of the Kondo resonance. However, the spin-orbit side band around 0.3 eV binding energy corresponding to the f_{7/2} peak is washed out, in contrast to the RPES spectrum at the Ce 3d -> 4f RPES threshold. This is interpreted as due to the different surface sensitivity, and the bulk-sensitive Ce 3d -> 4f RPES spectra are found to be consistent with other electron spectroscopy and low energy properties for alpha-like Ce-transition metal compounds, thus resolves controversy on the interpretation of Ce compound photoemission. The 4f spectral weight over the whole valence band can also be fitted fairly well with the Gunnarsson-Schoenhammer calculation of the single impurity Anderson model, although the detailed features show some dependence on the hybridization band shape and (possibly) Ce 5d emissions.
We have performed the photoemission and inverse photoemission experiments to elucidate the origin of Mott insulating states in A-site ordered perovskite CaCu$_3$Ti$_4$O$_{12}$ (CCTO). Experimental results have revealed that Cu 3$d$-O 2$p$ hybridized bands, which are located around the Fermi level in the prediction of the local-density approximation (LDA) band calculations, are actually separated into the upper Hubbard band at $sim$ 1.5 eV and the lower Hubbard band at $sim$ $-$1.7 eV with a band gap of $sim$ 1.5-1.8 eV. We also observed that Cu 3$d$ peak at $sim$ $-$3.8 eV and Ti 3$d$ peak at $sim$ 3.8 eV are further away from each other than as indicated in the LDA calculations. In addition, it is found that the multiplet strucutre around $-$9 eV includes a considerable number of O 2$p$ states. These observations indicate that the Cu 3$d$ and Ti 3$d$ electrons hybridized with the O 2$p$ states are strongly correlated, which originates in the Mott-insulating states of CCTO.
Iron resonant valance band photoemission spectra of Sr substituted LaFe0.75Ni0.25 O3-{delta} have been recorded across the Fe 2p - 3d absorption threshold to obtain Fe specific spectral information on the 3d projected partial density of states. Comparison with La1-xSrxFeO3 resonant VB PES literature data suggests that substitution of Fe by Ni forms electron holes which are mainly O 2p character. Substitution of La by Sr increases the hole concentration to an extent that the eg structure vanishes. The variation of the eg and t2g structures is paralleled by the changes in the electrical conductivity.
The bulk-sensitive Ce 4$f$ spectral weights of various Ce compounds including CeFe$_2$, CeNi$_2$, and CeSi$_2$ were obtained with the resonant photoemission technique at the Ce 3d-edge. We found the lineshapes change significantly with the small change of the incident photon energy. Detailed analysis showed that this phenomenon results primarily from the Auger transition between different multiplet states of the Ce $underline{3d_{5/2}}4f^2$ (bar denotes a hole) electronic configuration in the intermediate state of the resonant process. This tells us that extra care should be taken for the choice of the resonant photon energy when extracting Ce 4$f$ spectral weights from the Ce 3$d$-edge resonant photoemission spectra. The absorption energy corresponding to the lowest multiplet structure of the Ce $underline{3d_{5/2}}4f^2$ configuration seems to be the logical choice.
We report on the results of angle-resolved photoemission experiments on a quasi-one-dimensional $MX$-chain compound [Ni(chxn)$_2$Br]Br$_2$ (chxn = 1$R$,2$R$-cyclohexanediamine), a one-dimensional Heisenberg system with $S=1/2$ and $J sim 3600$ K, which shows a gigantic non-linear optical effect. A band having about 500 meV energy dispersion is found in the first half of the Brillouin zone $(0le kb/pi <1/2)$, but disappears at $kb / pi sim 1/2$. Two dispersive features, expected from the spin-charge separation, as have been observed in other quasi-one-dimensional systems like Sr$_2$CuO$_3$, are not detected. These characteristic features are well reproduced by the $d$-$p$ chain model calculations with a small charge-transfer energy $Delta$ compared with that of one-dimensional Cu-O based compounds. We propose that this smaller $Delta$ is the origin of the absence of clear spin- and charge-separation in the photoemission spectra and strong non-linear optical effect in [Ni(chxn)$_2$Br]Br$_2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا