Do you want to publish a course? Click here

Fe-resonant valence band photoemission and oxygen NEXAFS study on La1-xSrxFe0.75Ni0.25O3-{delta}

151   0   0.0 ( 0 )
 Added by Artur Braun
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Iron resonant valance band photoemission spectra of Sr substituted LaFe0.75Ni0.25 O3-{delta} have been recorded across the Fe 2p - 3d absorption threshold to obtain Fe specific spectral information on the 3d projected partial density of states. Comparison with La1-xSrxFeO3 resonant VB PES literature data suggests that substitution of Fe by Ni forms electron holes which are mainly O 2p character. Substitution of La by Sr increases the hole concentration to an extent that the eg structure vanishes. The variation of the eg and t2g structures is paralleled by the changes in the electrical conductivity.



rate research

Read More

Substitution of La by Sr in the 25% Ni doped charge transfer insulator LaFeO3 creates structural changes that inflect the electrical conductivity caused by small polaron hopping via exchange interactions and charge transfer. The substitution forms electron holes and a structural crossover from orthorhombic to rhombohedral symmetry, and then to cubic symmetry. The structural crossover is accompanied by a crossover from Fe3+-O2--Fe3+ superexchange interaction to Fe3+-O2--Fe4+ double exchange interaction, as evidenced by a considerable increase of conductivity. These interactions and charge transfer mechanism depend on superexchange angle, which approaches 180{deg} upon increasing Sr concentration, leading an increased overlap between the O (2p) and Fe/Ni (3d) orbitals.
Electrochemical oxidation of hematite ({alpha}-Fe2O3) nano-particulate films at 600 mV vs. Ag+/AgCl reference in KOH electrolyte forms a species at the hematite surface which causes a new transition in the upper Hubbard band between the Fe(3d)-O(2p) state region and the Fe(4sp)-O(2p) region, as evidenced by oxygen near edge x-ray absorption fine structure (NEXAFS) spectra. The electrochemical origin of this transition suggests that it is related with a surface state. This transition, not known for pristine {alpha}-Fe2O3 is at about the same x-ray energy, where pristine 1% Si doped Si:Fe2O3 has such transition. Occurrence of this state coincides with the onset of an oxidative dark current wave at around 535 mV - a potential range, where the tunneling exchange current has been previously reported to increase by three orders of magnitude with the valence band and the transfer coefficient by a factor of 10. Oxidation to only 200 mV does not form such extra NEXAFS feature, supporting that a critical electrochemical potential between 200 and 600 mV is necessary to change the electronic structure of the iron oxide at the surface. Decrease of the surface roughness, as suggested by visual inspection, profilometry and x-ray reflectivity, points to faceting as potential structural origin of the surface state.
LaFe3/4Ni1/4O3 was subjected to oxygen near edge x-ray absorption fine structure (NEXAFS) spectroscopy for 300 K < T < 773 K. The spectra show in the pre-edge a small hole doped peak originating from Ni substitution. The relative spectral weight of this transition to the weight of the hybridized O(2p) - Fe(3d) transitions scales with T and has a maximum at around 600 K. The characteristic energies of the thermal activated spectral intensity and conductivity suggest that the concentration of charge transferred electrons from O(2p) to Ni(3d) increases and that the pre-edges account in part for the polaron activated transport.
We study the mixed valence transition ($T$$_{v}$ $sim$80 K) in EuNi$_{2}$(Si$_{0.2}$Ge$_{0.8}$)$_{2}$ using Eu 3$d-4f$ X-ray absorption spectroscopy (XAS) and resonant photoemission spectroscopy (RESPES). The Eu$^{2+}$ and Eu$^{3+}$ main peaks show a giant resonance and the spectral features match very well with atomic multiplet calculations. The spectra show dramatic temperature ($T$)-dependent changes over large energies ($sim$10 eV) in RESPES and XAS. The observed non-integral mean valencies of $sim$2.35 $pm$ 0.03 ($T$ = 120 K) and $sim$2.70 $pm$ 0.03 ($T$ = 40 K) indicate homogeneous mixed valence above and below $T$$_{v}$. The redistribution between Eu$^{2+}$$4f^7$+$[spd]^0$ and Eu$^{3+}$$4f^6$+$[spd]^1$ states is attributed to a hybridization change coupled to a Kondo-like volume collapse.
Interfaces between a bulk-insulating topological insulator (TI) and metallic adatoms have been studied using high-resolution, angle-resolved and core-level photoemission. Fe, Nb and Ag were evaporated onto Bi1.5Sb0.5Te1.7Se1.3 (BSTS) surfaces both at room temperature and 38K. The coverage- and temperature-dependence of the adsorption and interfacial formation process have been investigated, highlighting the effects of the overlayer growth on the occupied electronic structure of the TI. For all coverages at room temperature and for those equivalent to less than 0.1 monolayer at low temperature all three metals lead to a downward shift of the TIs bands with respect to the Fermi level. At room temperature Ag appears to intercalate efficiently into the van der Waals gap of BSTS, accompanied by low-level substitution of the Te/Se atoms of the termination layer of the crystal. This Te/Se substitution with silver increases significantly for low temperature adsorption, and can even dominate the electrostatic environment of the Bi/Sb atoms in the BSTS near-surface region. On the other hand, Fe and Nb evaporants remain close to the termination layer of the crystal. On room temperature deposition, they initially substitute isoelectronically for Bi as a function of coverage, before substituting for Te/Se atoms. For low temperature deposition, Fe and Nb are too immobile for substitution processes and show a behaviour consistent with clustering on the surface. For both Ag and Fe/Nb, these differing adsorption pathways leads to the qualitatively similar and remarkable behavior for low temperature deposition that the chemical potential first moves upward (n-type dopant behavior) and then downward (p-type behavior) on increasing coverage.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا