Do you want to publish a course? Click here

Angle-resolved photoemission study of MX-chain compound [Ni(chxn)$_2$Br]Br$_2$

96   0   0.0 ( 0 )
 Added by SHin-ichi Fujimori
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the results of angle-resolved photoemission experiments on a quasi-one-dimensional $MX$-chain compound [Ni(chxn)$_2$Br]Br$_2$ (chxn = 1$R$,2$R$-cyclohexanediamine), a one-dimensional Heisenberg system with $S=1/2$ and $J sim 3600$ K, which shows a gigantic non-linear optical effect. A band having about 500 meV energy dispersion is found in the first half of the Brillouin zone $(0le kb/pi <1/2)$, but disappears at $kb / pi sim 1/2$. Two dispersive features, expected from the spin-charge separation, as have been observed in other quasi-one-dimensional systems like Sr$_2$CuO$_3$, are not detected. These characteristic features are well reproduced by the $d$-$p$ chain model calculations with a small charge-transfer energy $Delta$ compared with that of one-dimensional Cu-O based compounds. We propose that this smaller $Delta$ is the origin of the absence of clear spin- and charge-separation in the photoemission spectra and strong non-linear optical effect in [Ni(chxn)$_2$Br]Br$_2$.

rate research

Read More

We calculate the strength of the effective onsite Coulomb interaction (Hubbard $U$) in two-dimensional (2D) transition-metal (TM) dihalides MX$_2$ and trihalides MX$_3$ (M=Ti, V, Cr, Mn, Fe, Co, Ni; X=Cl, Br, I) from first principles using the constrained random-phase approximation. The correlated subspaces are formed from $t_{2g}$ or $e_g$ bands at the Fermi energy. Elimination of the efficient screening taking place in these narrow bands gives rise to sizable interaction parameters U between the localized $t_{2g}$ ($e_g$) electrons. Due to this large Coulomb interaction, we find $U/W >1$ (with the band width $W$) in most TM halides, making them strongly correlated materials. Among the metallic TM halides in paramagnetic state, the correlation strength $U/W$ reaches a maximum in NiX$_2$ and CrX$_3$ with values much larger than the corresponding values in elementary TMs and other TM compounds. Based on the Stoner model and the calculated $U$ and $J$ values, we discuss the tendency of the electron spins to order ferromagnetically.
We performed an angle-resolved photoemission spectroscopy study of the Ni-based superconductor SrNi$_2$As$_2$. Electron and hole Fermi surface pockets are observed, but their different shapes and sizes lead to very poor nesting conditions. The experimental electronic band structure of SrNi$_2$As$_2$ is in good agreement with first-principles calculations after a slight renormalization (by a factor 1.1), confirming the picture of Hunds exchange-dominated electronic correlations decreasing with increasing filling of the $3d$ shell in the Fe-, Co- and Ni-based compounds. These findings emphasize the importance of Hunds coupling and $3d$-orbital filling as key tuning parameters of electronic correlations in transition metal pnictides.
Inelastic neutron scattering is used to investigate the temperature dependence of spin correlations in the 3-dimensional XY antiferromagnet Ni(Cl$_{1-x}$Br$_x$)$_2$$cdot$4SC(NH$_2$)$_2$, $ x = 0.14(1)$, tuned close to the chemical-composition-induced soft-mode transition. The local dynamic structure factor shows $hbaromega/T$ scaling behavior characteristic of a quantum critical point. The deviation of the measured critical exponent from spin wave theoretical expectations are attributed to disorder. Another effect of disorder is local excitations above the magnon band. Their energy, structure factor and temperature dependence are well explained by simple strong-bond dimers associated with Br-impurity sites.
118 - W. Tao , L. M. Chen , X. M. Wang 2013
The bulk single crystals of $S = 1$ chain compound Ni(C$_3$H$_{10}$N$_2$)$_2$NO$_2$ClO$_4$ are grown by using a slow evaporation method at a constant temperature and a slow cooling method. It is found that the optimum condition of growing large crystals is via slow evaporation at 25 $^circ$C using 0.015 mol Ni(ClO$_4$)$_2$$cdot$6H$_2$O, 0.015 mol NaNO$_2$, and 0.03 mol 1,3-propanediamine liquid dissolved into 30 ml aqueous solvent. High-quality crystals with size up to $18 times 7.5 times 5$ mm$^3$ are obtained. The single crystals are characterized by measurements of x-ray diffraction, magnetic susceptibility, specific heat and thermal conductivity. The susceptibilities along three crystallographic axes are found to exhibit broad peaks at $sim 55$ K, and then decrease abruptly to zero at lower temperatures, which is characteristic of a Haldane chain system. The specific heat and the thermal conductivity along the $c$ axis can be attributed to the simple phononic contribution and are analyzed using the Debye approximation.
202 - Yang Luo , Chen Zhang , Qi-Yi Wu 2019
The three-dimensional electronic structure and Ce 4f electrons of the heavy fermion superconductor CePt2In7 is investigated. Angle-resolved photoemission spectroscopy using variable photon energy establishes the existence of quasi-two and three dimensional Fermi surface topologies. Temperature-dependent 4d-4f on-resonance photoemission spectroscopies reveal that heavy quasiparticle bands begin to form at a temperature well above the characteristic (coherence) temperature T*. T* emergence may be closely related to crystal electric field splitting, particularly the low-lying heavy band formed by crystal electric field splitting.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا