No Arabic abstract
Wurtzite GaN:Mn films on sapphire substrates were successfully grown by use of the molecular beam epitaxy (MBE) system. The film has an extremely high Curie temperature of around 940 K, although the Mn concentration is only about 3 ~ 5 %. Magnetization measurements were carried out in magnetic fields parallel to the film surface up to 7 T. The magnetization process shows the coexistence of ferromagnetic and paramagnetic contributions at low temperatures, while the typical ferromagnetic magnetization process is mainly observed at high temperatures because of the decrease of the paramagnetic contributions. The observed transport characteristics show a close relation between the magnetism and the impurity conduction. The double exchange mechanism of the Mn-impurity band is one of the possible models for the high-TC ferromagnetism in GaN:Mn.
Here we present a study of magnetism in CTO anatase films grown by pulsed laser deposition under a variety of oxygen partial pressures and deposition rates. Energy-dispersive spectrometry and transition electron microscopy analyses indicate that a high deposition rate leads to a homogeneous microstructure, while very low rate or postannealing results in cobalt clustering. Depth resolved low-energy muon spin rotation experiments show that films grown at a low oxygen partial pressure ($approx 10^{-6}$ torr) with a uniform structure are fully magnetic, indicating intrinsic ferromagnetism. First principles calculations identify the beneficial role of low oxygen partial pressure in the realization of uniform carrier-mediated ferromagnetism. This work demonstrates that Co:TiO$_2$ is an intrinsic diluted magnetic semiconductor.
Two-dimensional (2D) ferromagnetic (FM) semiconductors with high Curie temperature have long been pursued for electronic and spintronic applications. Here we provide a general strategy to achieve robust FM state in bilayer CrI3 of the monoclinic stacking, which intrinsically has interlayer antiferromagnetic (AFM) order and weak in-plane FM coupling. We showed that the proximity effect from bulk semiconducting substrates induces electronic doping and significantly increases the FM nearest-neighbor exchange for bilayer CrI3, leading to the AFM-to-FM transition for the interlayer spin configuration as well as enhanced intralayer FM coupling. By first-principles calculations and Monte Carlo simulations, bulk and 2D semiconductors providing different interaction strengths from strong covalent bonding to weak van der Waals (vdW) interaction with CrI3 are compared to thoroughly address the substrate effect on magnetic behavior and Curie temperature of bilayer CrI3. These theoretical results offer a facile route for direct synthesis of 2D ferromagnets on proper semiconducting substrates to achieve high Curie temperature for device implementation.
We report on the growth of heterostructures composed of layers of the high-Curie temperature ferromagnet Co-doped (La,Sr)TiO3 (Co-LSTO) with high-mobility SrTiO3 (STO) substrates processed at low oxygen pressure. While perpendicular spin-dependent transport measurements in STO//Co-LSTO/LAO/Co tunnel junctions demonstrate the existence of a large spin polarization in Co-LSTO, planar magnetotransport experiments on STO//Co-LSTO samples evidence electronic mobilities as high as 10000 cm2/Vs at T = 10 K. At high enough applied fields and low enough temperatures (H < 60 kOe, T < 4 K) Shubnikov-de Haas oscillations are also observed. We present an extensive analysis of these quantum oscillations and relate them with the electronic properties of STO, for which we find large scattering rates up to ~ 10 ps. Thus, this work opens up the possibility to inject a spin-polarized current from a high-Curie temperature diluted oxide into an isostructural system with high-mobility and a large spin diffusion length.
We have examined whether the Co ions crystallographically substitute on the Ti sites in rutile and anatase Ti_{1-x}$Co$_{x}$O$_{2-delta}$ thin films that exhibit room-temperature ferromagnetism. Intensities of the x-ray Bragg reflection from the films were measured around the $K$-absorption-edge of Co. If the Co ions randomly substitute on the Ti sites, the intensity should exhibit an anomaly due to the anomalous dispersion of the atomic scattering factor of Co. However, none of the anatase and rutile samples did exhibit an anomaly, unambiguously showing that the Co ions in Ti$_{1-x}$Co$_{x}$O$_{2-delta}$ are not exactly located at the Ti sites of TiO$_2$. The absence of the anomaly is probably caused by a significant deformation of the local structure around Co due to the oxygen vacancy. We have applied the same method to paramagnetic Zn$_{1-x}$Co$_{x}$O thin films and obtained direct evidence that the Co ions are indeed substituted on the Zn sites.
We propose a method for nano-scale characterization of long range magnetic order in diluted magnetic systems to clarify the origins of the room temperature ferromagnetism. The GaN:Mn thin films are grown by metal-organic chemical vapor deposition with the concentration of Ga-substitutional Mn up to 3.8%. Atomic force microscope (AFM) and magnetic force microscope (MFM) characterizations are performed on etched artificial microstructures and natural dislocation pits. Numerical simulations and theoretical analysis on the AFM and MFM data have confirmed the formation of long range magnetic order and ruled out the possibility that nano-clusters contributed to the ferromagnetism. We suggest that delocalized electrons might play a role in the establishment of this long range magnetic order.