Do you want to publish a course? Click here

From ballistic motion to localization: a phase space analysis

85   0   0.0 ( 0 )
 Added by Gert-Ludwig Ingold
 Publication date 2001
  fields Physics
and research's language is English
 Authors Andre Wobst




Ask ChatGPT about the research

We introduce phase space concepts to describe quantum states in a disordered system. The merits of an inverse participation ratio defined on the basis of the Husimi function are demonstrated by a numerical study of the Anderson model in one, two, and three dimensions. Contrary to the inverse participation ratios in real and momentum space, the corresponding phase space quantity allows for a distinction between the ballistic, diffusive, and localized regimes on a unique footing and provides valuable insight into the structure of the eigenstates.



rate research

Read More

Structure of eigenstates in a periodic quasi-1D waveguide with a rough surface is studied both analytically and numerically. We have found a large number of regular eigenstates for any high energy. They result in a very slow convergence to the classical limit in which the eigenstates are expected to be completely ergodic. As a consequence, localization properties of eigenstates originated from unperturbed transverse channels with low indexes, are strongly localized (delocalized) in the momentum (coordinate) representation. These eigenstates were found to have a quite unexpeted form that manifests a kind of repulsion from the rough surface. Our results indicate that standard statistical approaches for ballistic localization in such waveguides seem to be unappropriate.
We propose a duality analysis for obtaining the critical manifold of two-dimensional spin glasses. Our method is based on the computation of quenched free energies with periodic and twisted periodic boundary conditions on a finite basis. The precision can be systematically improved by increasing the size of the basis, leading to very fast convergence towards the thermodynamic limit. We apply the method to obtain the phase diagrams of the random-bond Ising model and $q$-state Potts gauge glasses. In the Ising case, the Nishimori point is found at $p_N = 0.10929 pm 0.00002$, in agreement with and improving on the precision of existing numerical estimations. Similar precision is found throughout the high-temperature part of the phase diagram. Finite-size effects are larger in the low-temperature region, but our results are in qualitative agreement with the known features of the phase diagram. In particular we show analytically that the critical point in the ground state is located at finite $p_0$.
We propose a new approach to probing ergodicity and its breakdown in quantum many-body systems based on their response to a local perturbation. We study the distribution of matrix elements of a local operator between the systems eigenstates, finding a qualitatively different behaviour in the many-body localized (MBL) and ergodic phases. To characterize how strongly a local perturbation modifies the eigenstates, we introduce the parameter ${cal G}(L)=langle ln (V_{nm}/delta) rangle$, which represents a disorder-averaged ratio of a typical matrix element of a local operator $V$ to the energy level spacing, $delta$; this parameter is reminiscent of the Thouless conductance in the single-particle localization. We show that the parameter ${cal G}(L)$ decreases with system size $L$ in the MBL phase, and grows in the ergodic phase. We surmise that the delocalization transition occurs when ${cal G}(L)$ is independent of system size, ${cal G}(L)={cal G}_csim 1$. We illustrate our approach by studying the many-body localization transition and resolving the many-body mobility edge in a disordered 1D XXZ spin-1/2 chain using exact diagonalization and time-evolving block decimation methods. Our criterion for the MBL transition gives insights into microscopic details of transition. Its direct physical consequences, in particular logarithmically slow transport at the transition, and extensive entanglement entropy of the eigenstates, are consistent with recent renormalization group predictions.
Many-body localization (MBL) is an emergent phase in correlated quantum systems with promis- ing applications, particularly in quantum information. Here, we unveil the existence and analyse this phase in a chiral multiferroic model system. Conventionally, MBL occurrence is traced via level statistics by implementing a standard finite-size scaling procedure. Here, we present an approach based on the full distribution of the ratio of adjacent energy spacings. We find a strong broadening of the histograms of counts of these level spacings directly at the transition point from MBL to the ergodic phase. The broadening signals reliably the transition point without relying on an averaging procedure. The fast convergence of the histograms even for relatively small systems allows moni- toring the MBL dynamics with much less computational effort. Numerical results are presented for a chiral spin chain with a dynamical Dzyaloshinskii Moriya (DM) interaction, an established model to describe the spin excitations in a single phase spin-driven multiferroic system. The multiferroic MBL phase is uncovered and it is shown how to steer it via electric fields.
We study the many body localization (MBL) transition for interacting fermions subject to quasiperiodic potentials by constructing the local integrals of motion (LIOMs) in the MBL phase as time-averaged local operators. We study numerically how these time-averaged operators evolve across the MBL transition. We find that the norm of such time-averaged operators drops discontinuously to zero across the transition; as we discuss, this implies that LIOMs abruptly become unstable at some critical localization length of order unity. We analyze the LIOMs using hydrodynamic projections and isolating the part of the operator that is associated with interactions. Equipped with this data we perform a finite-size scaling analysis of the quasiperiodic MBL transition. Our results suggest that the quasiperiodic MBL transition occurs at considerably stronger quasiperiodic modulations, and has a larger correlation-length critical exponent, than previous studies had found.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا