Do you want to publish a course? Click here

Many-body localization phase in a spin-driven chiral multiferroic chain

324   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Many-body localization (MBL) is an emergent phase in correlated quantum systems with promis- ing applications, particularly in quantum information. Here, we unveil the existence and analyse this phase in a chiral multiferroic model system. Conventionally, MBL occurrence is traced via level statistics by implementing a standard finite-size scaling procedure. Here, we present an approach based on the full distribution of the ratio of adjacent energy spacings. We find a strong broadening of the histograms of counts of these level spacings directly at the transition point from MBL to the ergodic phase. The broadening signals reliably the transition point without relying on an averaging procedure. The fast convergence of the histograms even for relatively small systems allows moni- toring the MBL dynamics with much less computational effort. Numerical results are presented for a chiral spin chain with a dynamical Dzyaloshinskii Moriya (DM) interaction, an established model to describe the spin excitations in a single phase spin-driven multiferroic system. The multiferroic MBL phase is uncovered and it is shown how to steer it via electric fields.



rate research

Read More

We discuss the problem of localization in two dimensional electron systems in the quantum Hall (single Landau level) regime. After briefly summarizing the well-studied problem of Anderson localization in the non-interacting case, we concentrate on the problem of disorder induced many-body localization (MBL) in the presence of electron-electron interactions using numerical exact diagonalization and eigenvalue spacing statistics as a function of system size. We provide evidence showing that MBL is not attainable in a single Landau level with short range (white noise) disorder in the thermodynamic limit. We then study the interplay of topology and localization, by contrasting the behavior of topological and nontopological subbands arising from a single Landau level in two models - (i) a pair of extremely flat Hofstadter bands with an optimally chosen periodic potential, and (ii) a Landau level with a split-off nontopological impurity band. Both models provide convincing evidence for the strong effect of topology on the feasibility of many-body localization as well as slow dynamics starting from a nonequilibrium state with charge imbalance.
We generalize Pages result on the entanglement entropy of random pure states to the many-body eigenstates of realistic disordered many-body systems subject to long range interactions. This extension leads to two principal conclusions: first, for increasing disorder the shells of constant energy supporting a systems eigenstates fill only a fraction of its full Fock space and are subject to intrinsic correlations absent in synthetic high-dimensional random lattice systems. Second, in all regimes preceding the many-body localization transition individual eigenstates are thermally distributed over these shells. These results, corroborated by comparison to exact diagonalization for an SYK model, are at variance with the concept of non-ergodic extended states in many-body systems discussed in the recent literature.
263 - N. Moure , S. Haas , 2014
While there are well established methods to study delocalization transitions of single particles in random systems, it remains a challenging problem how to characterize many body delocalization transitions. Here, we use a generalized real-space renormalization group technique to study the anisotropic Heisenberg model with long-range interactions, decaying with a power $alpha$, which are generated by placing spins at random positions along the chain. This method permits a large-scale finite-size scaling analysis. We examine the full distribution function of the excitation energy gap from the ground state and observe a crossover with decreasing $alpha$. At $alpha_c$ the full distribution coincides with a critical function. Thereby, we find strong evidence for the existence of a many body localization transition in disordered antiferromagnetic spin chains with long range interactions.
84 - Jae-Ho Han , Ki-Seok Kim 2018
We investigate a many-body localization transition based on a Boltzmann transport theory. Introducing weak localization corrections into a Boltzmann equation, Hershfield and Ambegaokar re-derived the Wolfle-Vollhardt self-consistent equation for the diffusion coefficient [Phys. Rev. B {bf 34}, 2147 (1986)]. We generalize this Boltzmann equation framework, introducing electron-electron interactions into the Hershfield-Ambegaokar Boltzmann transport theory based on the study of Zala-Narozhny-Aleiner [Phys. Rev. B {bf 64}, 214204 (2001)]. Here, not only Altshuler-Aronov corrections but also dephasing effects are taken into account. As a result, we obtain a self-consistent equation for the diffusion coefficient in terms of the disorder strength and temperature, which extends the Wolfle-Vollhardt self-consistent equation in the presence of electron correlations. Solving our self-consistent equation numerically, we find a many-body localization insulator-metal transition, where a metallic phase appears from dephasing effects dominantly instead of renormalization effects at high temperatures. Although this mechanism is consistent with that of recent seminal papers [Ann. Phys. (N. Y). {bf 321}, 1126 (2006); Phys. Rev. Lett. {bf 95}, 206603 (2005)], we find that our three-dimensional metal-insulator transition belongs to the first order transition, which differs from the Anderson metal-insulator transition described by the Wolfle-Vollhardt self-consistent theory. We speculate that a bimodal distribution function for the diffusion coefficient is responsible for this first order phase transition.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا