We study the phase transition of the $pm J$ Heisenberg model in three dimensions. Using a dynamical simulation method that removes a drift of the system, the existence of the spin-glass (SG) phase at low temperatures is suggested. The transition temperature is estimated to be $T_{rm SG} sim 0.18J$ from both equilibrium and off-equilibrium Monte-Carlo simulations. Our result contradicts the chirality mechanism of the phase transition reported recently by Kawamura which claims that it is not the spins but the chiralities of the spins that are ordered in Heisenberg SG systems.
We have investigated the phase transition in the Heisenberg spin glass using massive numerical simulations to study larger sizes, 48x48x48, than have been attempted before at a spin glass phase transition. A finite-size scaling analysis indicates that the data is compatible with the most economical scenario: a common transition temperature for spins and chiralities.
The statics-dynamics correspondence in spin glasses relate non-equilibrium results on large samples (the experimental realm) with equilibrium quantities computed on small systems (the typical arena for theoretical computations). Here we employ statics-dynamics equivalence to study the Ising spin-glass critical behavior in three dimensions. By means of Monte Carlo simulation, we follow the growth of the coherence length (the size of the glassy domains), on lattices too large to be thermalized. Thanks to the large coherence lengths we reach, we are able to obtain accurate results in excellent agreement with the best available equilibrium computations. To do so, we need to clarify the several physical meanings of the dynamic exponent close to the critical temperature.
We introduce an efficient dynamical tree method that enables us, for the first time, to explicitly demonstrate thermo-remanent magnetization memory effect in a hierarchical energy landscape. Our simulation nicely reproduces the nontrivial waiting-time and waiting-temperature dependences in this non-equilibrium phenomenon. We further investigate the condensation effect, in which a small set of micro-states dominates the thermodynamic behavior, in the multi-layer trap model. Importantly, a structural phase transition of the tree is shown to coincide with the onset of condensation phenomenon. Our results underscore the importance of hierarchical structure and demonstrate the intimate relation between glassy behavior and structure of barrier trees.
We perform numerical simulations, including parallel tempering, on the Potts glass model with binary random quenched couplings using the JANUS application-oriented computer. We find and characterize a glassy transition, estimating the location of the transition and the value of the critical exponents. We show that there is no ferromagnetic transition in a large temperature range around the glassy critical temperature. We also compare our results with those obtained recently on the random permutation Potts glass.
We use Monte Carlo simulations to study the one-dimensional long-range diluted Heisenberg spin glass with interactions that fall as a power, sigma, of the distance. Varying the power is argued to be equivalent to varying the space dimension of a short-range model. We are therefore able to study both the mean-field and non-mean-field regimes. For one value of sigma, in the non-mean-field regime, we find evidence that the chiral glass transition temperature may be somewhat higher than the spin glass transition temperature. For the other values of sigma we see no evidence for this.
F. Matsubara
,T.n Shirakura (Faculty of Humanities
.
(2000)
.
"Phase Transition of a Heisenberg Spin-Glass Model in Three Dimensions"
.
Takayuki Shirakura
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا