Do you want to publish a course? Click here

Period-luminosity and period-luminosity-colour relations for Mira variables at maximum light

63   0   0.0 ( 0 )
 Added by Martin Hendry
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we confirm the existence of period-luminosity (PL) and period-luminosity-colour (PLC) relations at maximum light for O and C Mira variables in the LMC. We demonstrate that in the J and H bands the maximum light PL relations have a significantly smaller dispersion than their counterparts at mean light, while the K band and bolometric PL relations have a dispersion comparable to that at mean light. In the J, H and K bands the fitted PL relations for the O Miras are found to have smaller dispersion than those for the C Miras, at both mean and maximum light, while the converse is true for the relations based on bolometric magnitudes. The inclusion of a non-zero log period term is found to be highly significant in all cases except that of the C Miras in the J band, for which the data are found to be consistent with having constant absolute magnitude. This suggests the possibility of employing C Miras as standard candles. We suggest both a theoretical justification for the existence of Mira PL relations at maximum light and a possible explanation of why these relations should have a smaller dispersion than at mean light. The existence of such maximum light relations offers the possibility of extending the range and improving the accuracy of the Mira distance scale to Galactic globular clusters and to other galaxies.



rate research

Read More

We present Period-Luminosity and Period-Luminosity-Color relations at maximum-light for Mira variables in the Magellanic Clouds using time-series data from the Optical Gravitational Lensing Experiment (OGLE-III) and {it Gaia} data release 2. The maximum-light relations exhibit a scatter typically up to $sim 30%$ smaller than their mean-light counterparts. The apparent magnitudes of Oxygen-rich Miras at maximum-light display significantly smaller cycle-to-cycle variations than at minimum-light. High-precision photometric data for Kepler Mira candidates also exhibit stable magnitude variations at the brightest epochs while their multi-epoch spectra display strong Balmer emission lines and weak molecular absorption at maximum-light. The stability of maximum-light magnitudes for Miras possibly occurs due to the decrease in the sensitivity to molecular bands at their warmest phase. At near-infrared wavelengths, the Period-Luminosity relations of Miras display similar dispersion at mean and maximum-light with limited time-series data in the Magellanic Clouds. A kink in the Oxygen-rich Mira Period-Luminosity relations is found at 300 days in the $VI$-bands which shifts to longer-periods ($sim 350$~days) at near-infrared wavelengths. Oxygen-rich Mira Period-Luminosity relations at maximum-light provide a relative distance modulus, $Delta mu = 0.48pm0.08$~mag, between the Magellanic Clouds with a smaller statistical uncertainty than the mean-light relations. The maximum-light properties of Miras can be very useful for stellar atmosphere modeling and distance scale studies provided their stability and the universality can be established in other stellar environments in the era of extremely large telescopes.
281 - R. Alvarez 1997
HIPPARCOS astrometric and kinematical data of oxygen-rich Mira variables are used to calibrate absolute near-infrared magnitudes and kinematic parameters. Two sets of near-infrared magnitudes compiled from different authors are used: broad-band K and narrow-band photometric measurements at 1.04 micron (104 filter). Three distinct classes of stars with different kinematics and scale height have been identified. The two most significant groups present characteristics close to the ones usually assigned to extended/thick disk-halo population and old disk population respectively, and thus they might differ by their metallicity abundance. They exhibit different period distributions, as expected if these two groups actually correspond to populations of distinct initial masses, ages and metallicities. Two parallel period-luminosity relations are found in K as well as in 104, one for each significant population. The shift between these relations is interpreted as the consequence of the effects of metallicity abundance on the luminosity.
The Period--Luminosity relation (PLR) of Mira variable stars is an important tool to determine astronomical distances. The common approach of estimating the PLR is a two-step procedure that first estimates the Mira periods and then runs a linear regression of magnitude on log period. When the light curves are sparse and noisy, the accuracy of period estimation decreases and can suffer from aliasing effects. Some methods improve accuracy by incorporating complex model structures at the expense of significant computational costs. Another drawback of existing methods is that they only provide point estimation without proper estimation of uncertainty. To overcome these challenges, we develop a hierarchical Bayesian model that simultaneously models the quasi-periodic variations for a collection of Mira light curves while estimating their common PLR. By borrowing strengths through the PLR, our method automatically reduces the aliasing effect, improves the accuracy of period estimation, and is capable of characterizing the estimation uncertainty. We develop a scalable stochastic variational inference algorithm for computation that can effectively deal with the multimodal posterior of period. The effectiveness of the proposed method is demonstrated through simulations, and an application to observations of Miras in the Local Group galaxy M33. Without using ad-hoc period correction tricks, our method achieves a distance estimate of M33 that is consistent with published work. Our method also shows superior robustness to downsampling of the light curves.
In this work, we aimed to derive the $gri$-band period-luminosity (PL) and period-luminosity-color (PLC) relations for late-type contact binaries, for the first time, located in the globular clusters, using the homogeneous light curves collected by the Zwicky Transient Factory (ZTF). We started with 79 contact binaries in 15 globular clusters, and retained 30 contact binaries in 10 globular clusters that have adequate number of data points in the ZTF light curves and unaffected by blending. Magnitudes at mean and maximum light of these contact binaries were determined using a fourth-order Fourier expansion, while extinction corrections were done using the {tt Bayerstar2019} 3D reddening map together with adopting the homogeneous distances to their host globular clusters. After removing early-type and anomaly contact binaries, our derived $gri$-band PL and period-Wesenheit (PW) relations exhibit a much larger dispersion with large errors on the fitted coefficients. Nevertheless, the $gr$-band PL and PW relations based on this small sample of contact binaries in globular clusters were consistent with those based on a larger sample of nearby contact binaries. Good agreements of the PL and PW relations suggested both samples of contact binaries in the local Solar neighborhood and in the distant globular clusters can be combined and used to derive and calibrate the PL, PW and PLC relations. The final derived $gr$-band PL, PW and PLC relations were much improved than those based on the limited sample of contact binaries in the globular clusters.
191 - Michele Trabucchi 2017
Period-luminosity (PL) sequences of long period variables (LPVs) are commonly interpreted as different pulsation modes, but there is disagreement on the modal assignment. Here, we re-examine the observed PL sequences in the Large Magellanic Cloud, including the sequence of long secondary periods (LSPs), and their associated pulsation modes. Firstly, we theoretically model the sequences using linear, radial, non-adiabatic pulsation models and a population synthesis model of the LMC red giants. Then, we use a semi-empirical approach to assign modes to the pulsation sequences by exploiting observed multi-mode pulsators. As a result of the combined approaches, we consistently find that sequences B and C$^{prime}$ both correspond to first overtone pulsation, although there are some fundamental mode pulsators at low luminosities on both sequences. The masses of these fundamental mode pulsators are larger at a given luminosity than the mass of the first overtone pulsators. These two sequences B and C$^{prime}$ are separated by a small period interval in which large amplitude pulsation in a long secondary period (sequence D variability) occurs, meaning that the first overtone pulsation is not seen as the primary mode of pulsation. Observationally, this leads to the splitting of the first overtone pulsation sequence into the two observed sequences B and C$^{prime}$. Our two independent examinations also show that sequences A$^{prime}$, A and C correspond to third overtone, second overtone and fundamental mode pulsation, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا