Do you want to publish a course? Click here

Simultaneous inference of periods and period-luminosity relations for Mira variable stars

335   0   0.0 ( 0 )
 Added by Shiyuan He
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The Period--Luminosity relation (PLR) of Mira variable stars is an important tool to determine astronomical distances. The common approach of estimating the PLR is a two-step procedure that first estimates the Mira periods and then runs a linear regression of magnitude on log period. When the light curves are sparse and noisy, the accuracy of period estimation decreases and can suffer from aliasing effects. Some methods improve accuracy by incorporating complex model structures at the expense of significant computational costs. Another drawback of existing methods is that they only provide point estimation without proper estimation of uncertainty. To overcome these challenges, we develop a hierarchical Bayesian model that simultaneously models the quasi-periodic variations for a collection of Mira light curves while estimating their common PLR. By borrowing strengths through the PLR, our method automatically reduces the aliasing effect, improves the accuracy of period estimation, and is capable of characterizing the estimation uncertainty. We develop a scalable stochastic variational inference algorithm for computation that can effectively deal with the multimodal posterior of period. The effectiveness of the proposed method is demonstrated through simulations, and an application to observations of Miras in the Local Group galaxy M33. Without using ad-hoc period correction tricks, our method achieves a distance estimate of M33 that is consistent with published work. Our method also shows superior robustness to downsampling of the light curves.



rate research

Read More

We present Period-Luminosity and Period-Luminosity-Color relations at maximum-light for Mira variables in the Magellanic Clouds using time-series data from the Optical Gravitational Lensing Experiment (OGLE-III) and {it Gaia} data release 2. The maximum-light relations exhibit a scatter typically up to $sim 30%$ smaller than their mean-light counterparts. The apparent magnitudes of Oxygen-rich Miras at maximum-light display significantly smaller cycle-to-cycle variations than at minimum-light. High-precision photometric data for Kepler Mira candidates also exhibit stable magnitude variations at the brightest epochs while their multi-epoch spectra display strong Balmer emission lines and weak molecular absorption at maximum-light. The stability of maximum-light magnitudes for Miras possibly occurs due to the decrease in the sensitivity to molecular bands at their warmest phase. At near-infrared wavelengths, the Period-Luminosity relations of Miras display similar dispersion at mean and maximum-light with limited time-series data in the Magellanic Clouds. A kink in the Oxygen-rich Mira Period-Luminosity relations is found at 300 days in the $VI$-bands which shifts to longer-periods ($sim 350$~days) at near-infrared wavelengths. Oxygen-rich Mira Period-Luminosity relations at maximum-light provide a relative distance modulus, $Delta mu = 0.48pm0.08$~mag, between the Magellanic Clouds with a smaller statistical uncertainty than the mean-light relations. The maximum-light properties of Miras can be very useful for stellar atmosphere modeling and distance scale studies provided their stability and the universality can be established in other stellar environments in the era of extremely large telescopes.
In this paper we confirm the existence of period-luminosity (PL) and period-luminosity-colour (PLC) relations at maximum light for O and C Mira variables in the LMC. We demonstrate that in the J and H bands the maximum light PL relations have a significantly smaller dispersion than their counterparts at mean light, while the K band and bolometric PL relations have a dispersion comparable to that at mean light. In the J, H and K bands the fitted PL relations for the O Miras are found to have smaller dispersion than those for the C Miras, at both mean and maximum light, while the converse is true for the relations based on bolometric magnitudes. The inclusion of a non-zero log period term is found to be highly significant in all cases except that of the C Miras in the J band, for which the data are found to be consistent with having constant absolute magnitude. This suggests the possibility of employing C Miras as standard candles. We suggest both a theoretical justification for the existence of Mira PL relations at maximum light and a possible explanation of why these relations should have a smaller dispersion than at mean light. The existence of such maximum light relations offers the possibility of extending the range and improving the accuracy of the Mira distance scale to Galactic globular clusters and to other galaxies.
281 - R. Alvarez 1997
HIPPARCOS astrometric and kinematical data of oxygen-rich Mira variables are used to calibrate absolute near-infrared magnitudes and kinematic parameters. Two sets of near-infrared magnitudes compiled from different authors are used: broad-band K and narrow-band photometric measurements at 1.04 micron (104 filter). Three distinct classes of stars with different kinematics and scale height have been identified. The two most significant groups present characteristics close to the ones usually assigned to extended/thick disk-halo population and old disk population respectively, and thus they might differ by their metallicity abundance. They exhibit different period distributions, as expected if these two groups actually correspond to populations of distinct initial masses, ages and metallicities. Two parallel period-luminosity relations are found in K as well as in 104, one for each significant population. The shift between these relations is interpreted as the consequence of the effects of metallicity abundance on the luminosity.
$omega$ Centauri (NGC~5139) contains many variable stars of different types, including the pulsating type II Cepheids, RR Lyrae and SX Phoenicis stars. We carried out a deep, wide-field, near-infrared (IR) variability survey of $omega$ Cen, using the VISTA telescope. We assembled an unprecedented homogeneous and complete $J$ and $K_{rm S}$ near-IR catalog of variable stars in the field of $omega$ Cen. In this paper we compare optical and near-IR light curves of RR Lyrae stars, emphasizing the main differences. Moreover, we discuss the ability of near-IR observations to detect SX Phoenicis stars given the fact that the amplitudes are much smaller in these bands compared to the optical. Finally, we consider the case in which all the pulsating stars in the three different variability types follow a single period-luminosity relation in the near-IR bands.
$omega$ Centauri (NGC 5139) hosts hundreds of pulsating variable stars of different types, thus representing a treasure trove for studies of their corresponding period-luminosity (PL) relations. Our goal in this study is to obtain the PL relations for RR Lyrae, and SX Phoenicis stars in the field of the cluster, based on high-quality, well-sampled light curves in the near-infrared (IR). $omega$ Centauri was observed using VIRCAM mounted on VISTA. A total of 42 epochs in $J$ and 100 epochs in $K_{rm S}$ were obtained, spanning 352 days. Point-spread function photometry was performed using DoPhot and DAOPHOT in the outer and inner regions of the cluster, respectively. Based on the comprehensive catalogue of near-IR light curves thus secured, PL relations were obtained for the different types of pulsators in the cluster, both in the $J$ and $K_{rm S}$ bands. This includes the first PL relations in the near-IR for fundamental-mode SX Phoenicis stars. The near-IR magnitudes and periods of Type II Cepheids and RR Lyrae stars were used to derive an updated true distance modulus to the cluster, with a resulting value of $(m-M)_0 = 13.708 pm 0.035 pm 0.10$ mag, where the error bars correspond to the adopted statistical and systematic errors, respectively. Adding the errors in quadrature, this is equivalent to a heliocentric distance of $5.52pm 0.27$ kpc.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا