Do you want to publish a course? Click here

A new interpretation of the period-luminosity sequences of long-period variables

192   0   0.0 ( 0 )
 Added by Michele Trarbucchi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Period-luminosity (PL) sequences of long period variables (LPVs) are commonly interpreted as different pulsation modes, but there is disagreement on the modal assignment. Here, we re-examine the observed PL sequences in the Large Magellanic Cloud, including the sequence of long secondary periods (LSPs), and their associated pulsation modes. Firstly, we theoretically model the sequences using linear, radial, non-adiabatic pulsation models and a population synthesis model of the LMC red giants. Then, we use a semi-empirical approach to assign modes to the pulsation sequences by exploiting observed multi-mode pulsators. As a result of the combined approaches, we consistently find that sequences B and C$^{prime}$ both correspond to first overtone pulsation, although there are some fundamental mode pulsators at low luminosities on both sequences. The masses of these fundamental mode pulsators are larger at a given luminosity than the mass of the first overtone pulsators. These two sequences B and C$^{prime}$ are separated by a small period interval in which large amplitude pulsation in a long secondary period (sequence D variability) occurs, meaning that the first overtone pulsation is not seen as the primary mode of pulsation. Observationally, this leads to the splitting of the first overtone pulsation sequence into the two observed sequences B and C$^{prime}$. Our two independent examinations also show that sequences A$^{prime}$, A and C correspond to third overtone, second overtone and fundamental mode pulsation, respectively.



rate research

Read More

Context: The period-luminosity diagram (PLD) has proven to be a powerful tool for studying populations of pulsating red giants. Gaia Data Release 2 (DR2) provides a large data set including many long-period variables (LPVs) on which this tool can be applied. Aims: We investigate the location of LPVs from the Large and Small Magellanic Clouds in the PLD using various optical and infrared luminosity indicators from Gaia and 2MASS, respectively. We thereby distinguish between stars of different masses and surface chemistry. Methods: The data set taken from the Gaia DR2 catalogue of LPVs allows for a homogeneous study from low- to high-mass LPVs. These sources are divided into sub-populations of asymptotic giant branch (AGB) stars according to their mass and their O- or C-rich nature using the Gaia-2MASS diagram developed by our group. This diagram uses a Wesenheit index Wrp based on Wesenheit functions in the Gaia and 2MASS photometric bands. Four different luminosity indicators are used to study the period-luminosity (P-L) relations. Results: We provide the first observational evidence of a P-L relation offset for both fundamental and 1O pulsators between low- and intermediate-mass O-rich stars, in agreement with published pulsation predictions. Among the luminosity indicators explored, sequence C is the narrowest in the P-Wrp diagram, and is thus to be preferred over the other PLDs for the determination of distances using LPVs. The majority of massive asymptotic giant branch (AGB) stars and red supergiants form a smooth extension of sequence C of low- and intermediate-mass AGB stars in the P-Wrp diagram, suggesting that they pulsate in the fundamental mode. All results are similar in the two Magellanic Clouds.
High precision Kepler photometry is used to explore the details of AGB light curves. Since AGB variability has a typical time scale on order of a year we discuss at length the removal of long term trends and quarterly changes in Kepler data. Photometry for a small sample of nine SR AGB stars are examined using a 30 minute cadence over a period of 45 months. While undergoing long period variations of many magnitudes, the light curves are shown to be smooth at the millimagnitude level over much shorter time intervals. No flares or other rapid events were detected on the sub-day time scale. The shortest AGB period detected is on the order of 100 days. All the SR variables in our sample are shown to have multiple modes. This is always the first overtone typically combined with the fundamental. A second common characteristic of SR variables is shown to be the simultaneous excitation of multiple closely separated periods for the same overtone mode. Approximately half the sample had a much longer variation in the light curve, likely a long secondary period. The light curves were all well represented by a combination of sinusoids. However, the properties of the sinusoids are time variable with irregular variations present at low level. No non-radial pulsations were detected. It is argued that the long secondary period variation seen in many SR variables is intrinsic to the star and linked to multiple mode pulsation.
The second Gaia data release (DR2, spring 2018) included a unique all-sky catalogue of large-amplitude long-period variables (LPVs) containing Miras and semi-regular variables. These stars are on the Asymptotic Giant Branch (AGB), and are characterized by high luminosity, changing surface composition, and intense mass loss, that make them of paramount importance for stellar, galactic, and extra-galactic studies. An initial investigation of LPVs in the Large Magellanic Cloud (LMC) from the DR2 catalog of LPVs has revealed the possibility to disentangle O-rich and C-rich stars using a combination of optical Gaia and infrared 2MASS photometry. The so-called Gaia-2MASS diagram constructed to achieve this has further been shown to enable the identification of sub-groups of AGB stars among the O-rich and C-rich LPVs. Here, we extend this initial study of the Gaia-2MASS diagram to the Small Magellanic Cloud and the Galaxy, and use a variability amplitude proxy to identify LPVs from the full Gaia DR2 archive. We show that the remarkable properties found in the LMC also apply to these other stellar systems. Interesting features, moreover, emerge as a result of the different metallicities between the three stellar environments, which we highlight in this exploratory presentation of Gaias potential to study stellar populations harboring LPVs. Finally, we look ahead to the future, and highlight the power of the exploitation of Gaia RP spectra for the identification of carbon stars using solely Gaia data in forthcoming data releases, as revealed in an Image of the Week published by the Gaia consortium on the European Space Agencys web site. These proceedings include three animated images that can be used as outreach material.
149 - V. R. Karambelkar 2019
We present a catalog of 417 luminous infrared variable stars with periods exceeding 250 days. These were identified in 20 nearby galaxies by the ongoing SPIRITS survey with the Spitzer Space Telescope. Of these, 359 variables have $M_{[4.5]}$ (phase-weighted mean magnitudes) fainter than $-12$ and periods and luminosities consistent with previously reported variables in the Large Magellanic Cloud. However, 58 variables are more luminous than $M_{[4.5]} = -12$, including 11 that are brighter than $M_{[4.5]} = -13$ with the brightest having $M_{[4.5]} = -15.51$. Most of these bright variable sources have quasi-periods longer than 1000 days, including four over 2000 days. We suggest that the fundamental period-luminosity relationship, previously measured for the Large Magellanic Cloud, extends to much higher luminosities and longer periods in this large galaxy sample. We posit that these variables include massive AGB stars (possibly super-AGB stars), red supergiants experiencing exceptionally high mass-loss rates, and interacting binaries. We also present 3.6, 4.5, 5.8 and 8.0 $mu$m photometric catalogs for all sources in these 20 galaxies.
We present Period-Luminosity and Period-Luminosity-Color relations at maximum-light for Mira variables in the Magellanic Clouds using time-series data from the Optical Gravitational Lensing Experiment (OGLE-III) and {it Gaia} data release 2. The maximum-light relations exhibit a scatter typically up to $sim 30%$ smaller than their mean-light counterparts. The apparent magnitudes of Oxygen-rich Miras at maximum-light display significantly smaller cycle-to-cycle variations than at minimum-light. High-precision photometric data for Kepler Mira candidates also exhibit stable magnitude variations at the brightest epochs while their multi-epoch spectra display strong Balmer emission lines and weak molecular absorption at maximum-light. The stability of maximum-light magnitudes for Miras possibly occurs due to the decrease in the sensitivity to molecular bands at their warmest phase. At near-infrared wavelengths, the Period-Luminosity relations of Miras display similar dispersion at mean and maximum-light with limited time-series data in the Magellanic Clouds. A kink in the Oxygen-rich Mira Period-Luminosity relations is found at 300 days in the $VI$-bands which shifts to longer-periods ($sim 350$~days) at near-infrared wavelengths. Oxygen-rich Mira Period-Luminosity relations at maximum-light provide a relative distance modulus, $Delta mu = 0.48pm0.08$~mag, between the Magellanic Clouds with a smaller statistical uncertainty than the mean-light relations. The maximum-light properties of Miras can be very useful for stellar atmosphere modeling and distance scale studies provided their stability and the universality can be established in other stellar environments in the era of extremely large telescopes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا