Do you want to publish a course? Click here

Lyman Break Galaxies and Luminous IR Galaxies at z ~ 1

67   0   0.0 ( 0 )
 Added by Denis Burgarella
 Publication date 2007
  fields Physics
and research's language is English
 Authors D. Burgarella




Ask ChatGPT about the research

We use deep GALEX images of CDFS in UV to define the first large sample of 420 Lyman Break Galaxies at z~1. We use a PSF fitting to estimate UV magnitudes on these deep crowded images. Deep Spitzer IRAC and MIPS provide the first detection of a large sample of Lyman Break Galaxies in the mid- to far-infrared range. We are therefore able to study and compare the UV and TIR emission of Lyman Break Galaxies. We find that about 15% of the LBG sample are strong emitters at 24 microns (Red LBGs). Most of them are Luminous IR Galaxies (LIRGs) while the rest (Blue LBGs) are undetected at the 83 microJy level of MIPS GTO image. We find that Blue LBGs have a Spectral Energy Distribution similar to high redshift Lyman Break Galaxies. Finally, the dust-to-FUV ratio of this sample is compared with similar ratios at z=1 and z~2. This work suggests an evolution (decrease) of the dust-to-FUV ratio with the redshift.



rate research

Read More

We present the first large, unbiased sample of Lyman Break Galaxies (LBGs) at z ~ 1. Far ultraviolet-dropout (1530 A) galaxies in the Chandra Deep Field South have been selected using GALEX data. This first large sample in the z ~ 1 universe provides us with a high quality reference sample of LBGs. We analyzed the sample from the UV to the IR using GALEX, SPITZER, ESO and HST data. The morphology (obtained from GOODS data) of 75 % of our LBGs is consistent with a disk. The vast majority of LBGs with an IR detection are also Luminous Infrared Galaxies (LIRGs). As a class, the galaxies not detected at 24 microns are an order of magnitude fainter relative to the UV compared with those detected individually, suggesting that there may be two types of behavior within the sample. For the IR-bright galaxies, there is an apparent upper limit for the UV dust attenuation and this upper limit is anti-correlated with the observed UV luminosity. Previous estimates of dust attenuations based on the ultraviolet slope are compared to new ones based on the FIR/UV ratio (for LBGs detected at 24 microns), which is usually a more reliable estimator. Depending on the calibration we use to estimate the total IR luminosity, beta-based attenuations A_{FUV} are larger by 0.2 to 0.6 mag. than the ones estimated from FIR/UV ratio. Finally, for IR-bright LBGs, median estimated beta-based SFRs are 2-3 times larger than the total SFRs estimated as SFR_{TOT} = SFR_{UV} + SFR_{IR} while IR-based SFRs provide values below SFR_{TOT} by 15 - 20 %. We use a stacking method to statistically constrain the 24 microns flux of LBGs non individually detected. The results suggest that these LBGs do not contain large amounts of dust.
We have discovered six galaxies with spectroscopically confirmed redshifts of 4.8<z<5.8 in a single 44 square arcminute field imaged deeply in R, I and z-bands. All the spectra show an emission-line in the region around 7000-8400 angstroms with a spectroscopically-detected faint continuum break across the line. These six were drawn from 13 sources with I_AB<26.2 and R_AB-I_AB>1.5 in the field, this photometric cut designed to select galaxies at z>4.8. The line fluxes range between 0.2 to 2.5 x 10^-17 ergs cm^-2 s^-1 indicating luminosities of around 10^42-43 ergs s^-1 for Ly-alpha and their high emission line equivalent widths suggest very young ages (<10^8 yrs). A further line-emitting object with no detectable continuum was serendipitously detected by spectroscopy. If this line is Ly-alpha then it is from a source at z=6.6, making this the most distant galaxy known. However, the redshift cannot be considered secure as it is based on a single line. No broad emission line objects (quasars) were detected. The 13 sources at I_AB<26.2 are less than that expected if the luminosity function of dropout galaxies remained unchanged between z=3 and z=6, although the deficit is not highly significant given possible cosmic variance. The UV luminosity density from galaxies brighter than our flux limit is considerably less than that necessary to keep the volume probed by our field at <z>~5.3 ionized. These galaxies are observed within several hundred Myr of the end of the epoch of reionization (z=6-7), with little time for the luminosity function to evolve. This, and the lack of detected quasars, imply that the bulk of the UV flux that reionized the universe came from faint galaxies with M_(1700 ang)>-21.
90 - C.C. Steidel 1998
We report on the status of large surveys of photometrically selected star forming galaxies at z~3 and z~4, with particular emphasis on both the advantages and the limitations of selecting objects using the ``Lyman break technique. Current results on the luminosity functions, luminosity densities, color distribution, star formation rates, clustering properties, and the differential evolution of the population as a function of redshift are summarized.
In the standard picture of structure formation, the first massive galaxies are expected to form at the highest peaks of the density field, which constitute the cores of massive proto-clusters. Luminous quasars (QSOs) at z~4 are the most strongly clustered population known, and should thus reside in massive dark matter halos surrounded by large overdensities of galaxies, implying a strong QSO-galaxy cross-correlation function. We observed six z~4 QSO fields with VLT/FORS exploiting a novel set of narrow band filters custom designed to select Lyman Break Galaxies (LBGs) in a thin redshift slice of Delta_z~0.3, mitigating the projection effects that have limited the sensitivity of previous searches for galaxies around z>~4 QSOs. We find that LBGs are strongly clustered around QSOs, and present the first measurement of the QSO-LBG cross-correlation function at z~4, on scales of 0.1<~R<~9 Mpc/h (comoving). Assuming a power law form for the cross-correlation function xi=(r/r0_QG)^gamma, we measure r0_QG=8.83^{+1.39}_{-1.51} Mpc/h for a fixed slope of gamma=2.0. This result is in agreement with the expected cross-correlation length deduced from measurements of the QSO and LBG auto-correlation function, and assuming a linear bias model. We also measure a strong auto-correlation of LBGs in our QSO fields finding r0_GG=21.59^{+1.72}_{-1.69} Mpc/h for a fixed slope of gamma=1.5, which is ~4 times larger than the LBG auto-correlation length in random fields, providing further evidence that QSOs reside in overdensities of LBGs. Our results qualitatively support a picture where luminous QSOs inhabit exceptionally massive (M_halo>10^12 M_sun) dark matter halos at z~4.
63 - I. Iwata , K. Ohta 2003
(abridged) We present results of a search for Lyman break galaxies (LBGs) at z ~ 5 in a 618 square-arcmin field including the HDF-N taken by Subaru Prime Focus Camera. Utilizing the published redshift data of the HDF-N and its flanking fields, the color selection criteria are chosen so that LBGs are picked out most efficiently and least contaminated by foreground objects. The numbers of LBG candidates detected are 310 in 23.0 < I_c < 25.5. The rest-frame UV luminosity function(LF) of LBGs at z ~ 5 is derived statistically. The fraction of contamination is estimated to be ~50% in the faintest magnitude range. The completeness of the survey is ~80% at the bright part of the sample, and ~20% in the faintest magnitude range (25.0 < I_c <= 25.5). The LF of LBG candidates at z ~ 5 does not show a significant difference from those at z ~ 3 and 4, though there might be a slight decrease in the fainter part. The UV luminosity density within the observational limit is 0.56 - 0.69 times smaller than that obtained for LBGs at z ~ 3, depending on the adopted cosmology and the integration range of the LF. The similarity of the LFs at redshifts 5 to 3 implies that most of LBGs at z ~ 5 should have faded out at z ~ 3 and LBGs at z ~ 5 are different galaxies from those seen at z ~ 3, if we take face values for ages of the LBGs at z ~ 3 obtained by the SED fitting in which a continuous star formation in an individual galaxy is assumed. However, if the star formation in LBGs is sporadic, the similarity of the LF at z ~ 3 and 5 would be explained. Such sporadic star formation has been suggested by hydrodynamical simulations and semi-analytic models with collisional starbursts, and the trend of the cosmic star formation history predicted by these studies resembles to that estimated from the UV luminosity density within the observational limit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا