Do you want to publish a course? Click here

Strong Clustering of Lyman Break Galaxies around Luminous Quasars at z~4

93   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the standard picture of structure formation, the first massive galaxies are expected to form at the highest peaks of the density field, which constitute the cores of massive proto-clusters. Luminous quasars (QSOs) at z~4 are the most strongly clustered population known, and should thus reside in massive dark matter halos surrounded by large overdensities of galaxies, implying a strong QSO-galaxy cross-correlation function. We observed six z~4 QSO fields with VLT/FORS exploiting a novel set of narrow band filters custom designed to select Lyman Break Galaxies (LBGs) in a thin redshift slice of Delta_z~0.3, mitigating the projection effects that have limited the sensitivity of previous searches for galaxies around z>~4 QSOs. We find that LBGs are strongly clustered around QSOs, and present the first measurement of the QSO-LBG cross-correlation function at z~4, on scales of 0.1<~R<~9 Mpc/h (comoving). Assuming a power law form for the cross-correlation function xi=(r/r0_QG)^gamma, we measure r0_QG=8.83^{+1.39}_{-1.51} Mpc/h for a fixed slope of gamma=2.0. This result is in agreement with the expected cross-correlation length deduced from measurements of the QSO and LBG auto-correlation function, and assuming a linear bias model. We also measure a strong auto-correlation of LBGs in our QSO fields finding r0_GG=21.59^{+1.72}_{-1.69} Mpc/h for a fixed slope of gamma=1.5, which is ~4 times larger than the LBG auto-correlation length in random fields, providing further evidence that QSOs reside in overdensities of LBGs. Our results qualitatively support a picture where luminous QSOs inhabit exceptionally massive (M_halo>10^12 M_sun) dark matter halos at z~4.



rate research

Read More

Characterizing high-z quasar environments is key to understanding the co-evolution of quasars and the surrounding galaxies. To restrict their global picture, we statistically examine the g-dropout galaxy overdensity distribution around 570 faint quasar candidates at z ~ 4, based on the Hyper Suprime-Cam Subaru Strategic Program survey. We compare the overdensity significances of g-dropout galaxies around the quasars with those around g-dropout galaxies, and find no significant difference between their distributions. A total of 4 (22) out of the 570 faint quasars, 0.7_{-0.4}^{+0.4} (3.9_{-0.8}^{+0.8}) %, are found to be associated with the > 4 sigma overdense regions within an angular separation of 1.8 (3.0) arcmin, which is the typical size of protoclusters at this epoch. This is similar to the fraction of g-dropout galaxies associated with the > 4 sigma overdense regions. This result is consistent with our previous work that 1.3_{-0.9}^{+0.9} % and 2.0_{-1.1}^{+1.1} % of luminous quasars detected in the Sloan Digital Sky Survey exist in the > 4 sigma overdense regions within 1.8 and 3.0 arcmin separations, respectively. Therefore, we suggest that the galaxy number densities around quasars are independent of their luminosity, and most quasars do not preferentially appear in the richest protocluster regions at z ~ 4. The lack of an apparent positive correlation between the quasars and the protoclusters implies that: i) the gas-rich major merger rate is relatively low in the protocluster regions, ii) most high-z quasars may appear through secular processes, or iii) some dust-obscured quasars exist in the protocluster regions.
66 - D. Burgarella 2007
We use deep GALEX images of CDFS in UV to define the first large sample of 420 Lyman Break Galaxies at z~1. We use a PSF fitting to estimate UV magnitudes on these deep crowded images. Deep Spitzer IRAC and MIPS provide the first detection of a large sample of Lyman Break Galaxies in the mid- to far-infrared range. We are therefore able to study and compare the UV and TIR emission of Lyman Break Galaxies. We find that about 15% of the LBG sample are strong emitters at 24 microns (Red LBGs). Most of them are Luminous IR Galaxies (LIRGs) while the rest (Blue LBGs) are undetected at the 83 microJy level of MIPS GTO image. We find that Blue LBGs have a Spectral Energy Distribution similar to high redshift Lyman Break Galaxies. Finally, the dust-to-FUV ratio of this sample is compared with similar ratios at z=1 and z~2. This work suggests an evolution (decrease) of the dust-to-FUV ratio with the redshift.
297 - Masami Ouchi 2001
We study the luminosity function and the correlation function of about 1200 z~4 Lyman break galaxies (LBGs) with i<26 that are photometrically selected from deep BRi imaging data of a 618 arcmin^2 area in the Subaru/XMM-Newton Deep Field taken with Subaru Prime Focus Camera. The contamination and completeness of our LBG sample are evaluated, on the basis of the Hubble Deep Field-North (HDF-N) objects, to be 17% and 45%, respectively. We derive the UV (rest 1700A) luminosity functions (LFs) and find a large population of UV-luminous galaxies at z~4. The LFs of the red and blue subsamples imply that the bright LBGs are redder in the UV continuum than the average color of the LBGs. Then we calculate the correlation function over theta = 2-1000 and find that it is fitted fairly well by a power law, omega(theta)=A_omega theta^(-0.8), with A_omega=0.71 +/- 0.26. We estimate the correlation length r_0 (in comoving units) of the two-point spatial correlation function xi(r) = (r/r_0)^(-1.8) to be r_0=2.7 +0.5/-0.6 h^(-1) Mpc (Omega_m=0.3 and Omega_Lambda=0.7). The correlation function shows an excess of omega (theta) on small scales (theta < 5), departing from the power-law fit at > 3 sigma significance level. Interpreting this as being due to galaxy mergers, we evaluate the fraction of galaxies undergoing mergers to be 3.0 +/- 0.9%, which is significantly smaller than those of galaxies at intermediate redshifts.
We present broad-band imaging with the Subaru Telescope of a 25x25 field surrounding the radio galaxy TN J1338-1942 at redshift z=4.1. The field contains excesses of Lyman-alpha emitters (LAEs) and Lyman break galaxies (LBGs) identified with a protocluster surrounding the radio galaxy. Our new wide-field images provide information about the boundary of the protocluster and its surroundings. There are 874 candidate LBGs within our field, having redshifts in the range z=3.5-4.5. An examination of the brightest of these (with i< 25.0) shows that the most prominent concentration coincides with the previously discovered protocluster. The diameter of this galaxy overdensity corresponds to ~2 Mpc at z=4, consistent with the previous estimation using LAEs. Several other concentrations of LBGs are observed in the field, some of which may well be physically connected with the z=4.1 protocluster. The observed structure in the smoothed LBG distribution can be explained as the projection of large-scale structure, within the redshift range z=3.5-4.5, comprising compact overdensities and prominent larger voids. If the 5-8 observed compact overdensities are associated with protoclusters, the observed protocluster volume density is ~5x10^-6 Mpc^-3, similar to the volume density of rich clusters in the local Universe.
We make use of ALMA continuum observations of $15$ luminous Lyman-break galaxies at $z$$sim$$7$$-$$8$ to probe their dust-obscured star-formation. These observations are sensitive enough to probe to obscured SFRs of $20$ $M_{odot}$$/$$yr$ ($3sigma$). Six of the targeted galaxies show significant ($geq$$3$$sigma$) dust continuum detections, more than doubling the number of known dust-detected galaxies at $z$$>$$6.5$. Their IR luminosities range from $2.7$$times$$10^{11}$ $L_{odot}$ to $1.1$$times$$10^{12}$ $L_{odot}$, equivalent to obscured SFRs of $20$ to $105$ $M_{odot}$$/$$yr$. We use our results to quantify the correlation of the infrared excess IRX on the UV-continuum slope $beta_{UV}$ and stellar mass. Our results are most consistent with an SMC attenuation curve for intrinsic $UV$-slopes $beta_{UV,intr}$ of $-2.63$ and most consistent with an attenuation curve in-between SMC and Calzetti for $beta_{UV,intr}$ slopes of $-2.23$, assuming a dust temperature $T_d$ of $50$ K. Our fiducial IRX-stellar mass results at $z$$sim$$7$$-$$8$ are consistent with marginal evolution from $z$$sim$$0$. We then show how both results depend on $T_d$. For our six dust-detected sources, we estimate their dust masses and find that they are consistent with dust production from SNe if the dust destruction is low ($<$$90$%). Finally we determine the contribution of dust-obscured star formation to the star formation rate density for $UV$ luminous ($<$$-$$21.5$ mag: $gtrsim$$1.7$$L_{UV} ^*$) $z$$sim$$7$$-$$8$ galaxies, finding that the total SFR density at $z$$sim$$7$ and $z$$sim$$8$ from bright galaxies is $0.18_{-0.10}^{+0.08}$ dex and $0.20_{-0.09}^{+0.05}$ dex higher, respectively, i.e. $sim$$frac{1}{3}$ of the star formation in $gtrsim$$1.7$$L_{UV} ^*$ galaxies at $z$$sim$$7$$-$$8$ is obscured by dust.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا