Do you want to publish a course? Click here

Luminous Lyman Break Galaxies at z>5 and the Source of Reionization

81   0   0.0 ( 0 )
 Added by Matthew D. Lehnert
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have discovered six galaxies with spectroscopically confirmed redshifts of 4.8<z<5.8 in a single 44 square arcminute field imaged deeply in R, I and z-bands. All the spectra show an emission-line in the region around 7000-8400 angstroms with a spectroscopically-detected faint continuum break across the line. These six were drawn from 13 sources with I_AB<26.2 and R_AB-I_AB>1.5 in the field, this photometric cut designed to select galaxies at z>4.8. The line fluxes range between 0.2 to 2.5 x 10^-17 ergs cm^-2 s^-1 indicating luminosities of around 10^42-43 ergs s^-1 for Ly-alpha and their high emission line equivalent widths suggest very young ages (<10^8 yrs). A further line-emitting object with no detectable continuum was serendipitously detected by spectroscopy. If this line is Ly-alpha then it is from a source at z=6.6, making this the most distant galaxy known. However, the redshift cannot be considered secure as it is based on a single line. No broad emission line objects (quasars) were detected. The 13 sources at I_AB<26.2 are less than that expected if the luminosity function of dropout galaxies remained unchanged between z=3 and z=6, although the deficit is not highly significant given possible cosmic variance. The UV luminosity density from galaxies brighter than our flux limit is considerably less than that necessary to keep the volume probed by our field at <z>~5.3 ionized. These galaxies are observed within several hundred Myr of the end of the epoch of reionization (z=6-7), with little time for the luminosity function to evolve. This, and the lack of detected quasars, imply that the bulk of the UV flux that reionized the universe came from faint galaxies with M_(1700 ang)>-21.



rate research

Read More

66 - D. Burgarella 2007
We use deep GALEX images of CDFS in UV to define the first large sample of 420 Lyman Break Galaxies at z~1. We use a PSF fitting to estimate UV magnitudes on these deep crowded images. Deep Spitzer IRAC and MIPS provide the first detection of a large sample of Lyman Break Galaxies in the mid- to far-infrared range. We are therefore able to study and compare the UV and TIR emission of Lyman Break Galaxies. We find that about 15% of the LBG sample are strong emitters at 24 microns (Red LBGs). Most of them are Luminous IR Galaxies (LIRGs) while the rest (Blue LBGs) are undetected at the 83 microJy level of MIPS GTO image. We find that Blue LBGs have a Spectral Energy Distribution similar to high redshift Lyman Break Galaxies. Finally, the dust-to-FUV ratio of this sample is compared with similar ratios at z=1 and z~2. This work suggests an evolution (decrease) of the dust-to-FUV ratio with the redshift.
63 - I. Iwata , K. Ohta 2003
(abridged) We present results of a search for Lyman break galaxies (LBGs) at z ~ 5 in a 618 square-arcmin field including the HDF-N taken by Subaru Prime Focus Camera. Utilizing the published redshift data of the HDF-N and its flanking fields, the color selection criteria are chosen so that LBGs are picked out most efficiently and least contaminated by foreground objects. The numbers of LBG candidates detected are 310 in 23.0 < I_c < 25.5. The rest-frame UV luminosity function(LF) of LBGs at z ~ 5 is derived statistically. The fraction of contamination is estimated to be ~50% in the faintest magnitude range. The completeness of the survey is ~80% at the bright part of the sample, and ~20% in the faintest magnitude range (25.0 < I_c <= 25.5). The LF of LBG candidates at z ~ 5 does not show a significant difference from those at z ~ 3 and 4, though there might be a slight decrease in the fainter part. The UV luminosity density within the observational limit is 0.56 - 0.69 times smaller than that obtained for LBGs at z ~ 3, depending on the adopted cosmology and the integration range of the LF. The similarity of the LFs at redshifts 5 to 3 implies that most of LBGs at z ~ 5 should have faded out at z ~ 3 and LBGs at z ~ 5 are different galaxies from those seen at z ~ 3, if we take face values for ages of the LBGs at z ~ 3 obtained by the SED fitting in which a continuous star formation in an individual galaxy is assumed. However, if the star formation in LBGs is sporadic, the similarity of the LF at z ~ 3 and 5 would be explained. Such sporadic star formation has been suggested by hydrodynamical simulations and semi-analytic models with collisional starbursts, and the trend of the cosmic star formation history predicted by these studies resembles to that estimated from the UV luminosity density within the observational limit.
We present the results of Spectral Energy Distribution(SED) fitting analysis for Lyman Break Galaxies(LBGs) at z~5 in the GOODS-N and its flanking fields (the GOODS-FF). With the publicly available IRAC images in the GOODS-N and IRAC data in the GOODS-FF, we constructed the rest-frame UV to optical SEDs for a large sample (~100) of UV-selected galaxies at z~5. Comparing the observed SEDs with model SEDs generated with a population synthesis code, we derived a best-fit set of parameters (stellar mass, age, color excess, and star formation rate) for each of sample LBGs. The derived stellar masses range from 10^8 to 10^11M_sun with a median value of 4.1x10^9M_sun. The comparison with z=2-3 LBGs shows that the stellar masses of z~5 LBGs are systematically smaller by a factor of 3-4 than those of z=2-3 LBGs in a similar rest-frame UV luminosity range. The star formation ages are relatively younger than those of the z=2-3 LBGs. We also compared the results for our sample with other studies for the z=5-6 galaxies. Although there seem to be similarities and differences in the properties, we could not conclude its significance. We also derived a stellar mass function of our sample by correcting for incompletenesses. Although the number densities in the massive end are comparable to the theoretical predictions from semi-analytic models, the number densities in the low-mass part are smaller than the model predictions. By integrating the stellar mass function down to 10^8 M_sun, the stellar mass density at z~5 is calculated to be (0.7-2.4)x10^7M_sun Mpc^-3. The stellar mass density at z~5 is dominated by massive part of the stellar mass function. Compared with other observational studies and the model predictions, the mass density of our sample is consistent with general trend of the increase of the stellar mass density with time.
162 - Masataka Ando 2006
We report a deficiency of luminous Lyman break galaxies (LBGs) with a large rest-frame equivalent width (EW_rest) of Lyman-alpha emission at z~5-6. Combining our spectroscopic sample of LBGs at z~5 and those from the literature, we found that luminous LBGs at z~5-6 generally show weak Lyman-alpha emissions, while faint LBGs show a wide range of Lyman-alpha EW_rest and tend to have strong (EW_rest >20A) Lyman-alpha emissions; i.e., there is a deficiency of strong Lyman-alpha emission in luminous LBGs. There seems to be a threshold UV luminosity for the deficiency; it is M_1400 = -21.5 ~ -21.0 mag, which is close to or somewhat brighter than the M* of the UV luminosity function at z~5 and 6. Since the large EW_rest of Lyman-alpha emission can be seen among the faint LBGs, the fraction of Lyman-alpha emitters in LBGs may change rather abruptly with the UV luminosity. If the weakness of Lyman-alpha emission is due to dust absorption, the deficiency suggests that luminous LBGs at z=5-6 tend to be in dusty and more chemically evolved environments and started star formation earlier than faint ones, though other causes cannot be ruled out.
We present the results of a study of a large sample of luminous (z{AB}<26) Lyman break galaxies (LBGs) in the redshift interval 4.7<z<6.3, selected from a contiguous 0.63 square degree area covered by the UKIDSS Ultra Deep Survey (UDS) and the Subaru XMM-Newton Survey (SXDS). Utilising the large area coverage and the excellent available optical+nearIR data, we use a photometric redshift analysis to derive a new, robust, measurement of the bright end (L>L*) of the UV-selected luminosity function at high redshift. When combined with literature studies of the fainter LBG population, our new sample provides improved constraints on the luminosity function of redshift 5<z<6 LBGs over the luminosity range 0.1L*<L<10L*. A maximum likelihood analysis returns best-fitting Schechter function parameters of M*_1500=-20.73, phi*=0.0009 Mpc^-3 and alpha=-1.66 for the luminosity function at z=5, and M*_1500 = -20.04, phi*=0.0018 Mpc^-3 and alpha=-1.71 at z=6. In addition, an analysis of the angular clustering properties of our LBG sample demonstrates that luminous 5<z<6 LBGs are strongly clustered (r_0 = 8.1 Mpc), and are consistent with the occupation of dark matter halos with masses of ~10^{11.5-12.0} Msun. Moreover, by stacking the available multi-wavelength imaging data for the high-redshift LBGs it is possible to place useful constraints on their typical stellar mass. The results of this analysis suggest that luminous LBGs at 5<z<6 have an average stellar mass of ~10^10 Msun, consistent with the results of the clustering analysis assuming plausible values for the ratio of stellar to dark matter. Finally, by combining our luminosity function results with those of the stacking analysis we derive estimates of ~1x10^7 Msun Mpc^-3 and 4x10^6 Msun Mpc^-3 for the stellar mass density at z~5 and z~6 respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا