Do you want to publish a course? Click here

X-ray broad-band study of the symbiotic X-ray binary 4U 1954+31

137   0   0.0 ( 0 )
 Added by Nicola Masetti
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abridged) We present results of several X-ray observations of the X-ray binary 4U 1954+31 performed with the satellites BeppoSAX, EXOSAT, ROSAT, RXTE, and Swift. We also studied the RXTE ASM data over a period of more than 10 years. Light curves of all observations show an erratic behaviour with sudden increases in the source emission on timescales variable from hundreds to thousands of seconds. There are no indications of changes in the source spectral hardness, with the possible exception of the RXTE pointed observation. Timing analysis does not reveal the presence of coherent pulsations or periodicities either in the pointed observations in the range from 2 ms to 2000 s or in the long-term RXTE ASM light curve on timescales from days to years. The 0.2-150 keV spectrum, obtained with BeppoSAX, is the widest for this source available to date in terms of spectral coverage and is well described by a model consisting of a lower-energy thermal component (hot diffuse gas) plus a higher-energy (Comptonization) emission, with the latter modified by a partially-covering cold absorber plus a warm (ionized) absorber. A blackbody modelization of our BeppoSAX low-energy data is ruled out. The presence of a complex absorber local to the source is also supported by the 0.1-2 keV ROSAT spectrum. RXTE, EXOSAT and Swift X-ray spectroscopy is consistent with the above results, but indicates variations in the density and the ionization of the local absorber. A 6.5 keV emission line is possibly detected in the BeppoSAX and RXTE spectra. All this information suggests that the scenario that better describes 4U 1954+31 consists of a binary system in which a neutron star orbits in a highly inhomogeneus medium from a stellar wind coming from its optical companion, an M-type giant star.



rate research

Read More

The X-ray binary 4U 1954+31 has been classified as a Low Mass X-ray Binary (LMXB) containing a M giant and a neutron star (NS). It has also been included in the rare class of X-ray symbiotic binaries (SyXB). The Gaia parallax, infrared colors, spectral type, abundances, and orbital properties of the M star demonstrate that the cool star in this system is not a low mass giant but a high mass M supergiant. Thus, 4U 1954+31 is a High Mass X-ray Binary (HMXB) containing a late-type supergiant. It is the only known binary system of this type. The mass of the M I is 9$^{+6}_{-2}$ M$_odot$ giving an age of this system in the range 12 - 50 Myr with the NS no more than 43 Myr old. The spin period of the NS is one of the longest known, 5 hours. The existence of M I plus NS binary systems is in accord with stellar evolution theory, with this system a more evolved member of the HMXB population.
The symbiotic X-ray binary 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its ~5.4h NS spin period is the longest among all known accretion-powered pulsars and exhibited large (~7%) fluctuations over 8 years. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe Kalpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (~60-80%), and the location in the Corbet diagram favor high B-field (>~1e+12 G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (1e+33-1e+35 erg/s), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a ~1e+13 G NS, this scheme can explain the ~5.4 h equilibrium rotation without employing the magnetar-like field (~1e+16 G) required in the disk accretion case. The time-scales of multiple irregular flares (~50 s) can also be attributed to the free-fall time from the Alfven shell for a ~1e+13 G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.
We present an analysis of the X-ray variability of three symbiotic X-ray binaries, GX 1+4, 4U 1700+24, and 4U 1954+31, using observations made with the Swift Burst Alert Telescope (BAT) and the Rossi X-ray Timing Explorer (RXTE) All-Sky Monitor (ASM). Observations of 4U 1954+31 with the Swift BAT show modulation at a period near 5 hours. Models to explain this modulation are discussed including the presence of an exceptionally slow X-ray pulsar in the system and accretion instabilities. We conclude that the most likely interpretation is that 4U 1954+31 contains one of the slowest known X-ray pulsars. Unlike 4U 1954+31, neither GX 1+4 nor 4U 1700+24 show any evidence for modulation on a timescale of hours. An analysis of the RXTE ASM light curves of GX 1+4, 4U 1700+24, and 4U 1954+31 does not show the presence of periodic modulation in any source, although there is considerable variability on long timescales for all three sources. There is no modulation in GX 1+4 on either the optical 1161 day orbital period or a previously reported 304 day X-ray period. For 4U 1700+24 we do not confirm the 404 day X-ray period previously proposed for this source from a shorter duration ASM light curve. We conclude that all three sources have substantial low-frequency noise in their power spectra that may give the appearance of periodic modulation if this noise is not properly accounted for, particularly if short duration light curves are examined.
We present an analysis of the highly variable accreting X-ray pulsar 3A 1954+319 using 2005-2009 monitoring data obtained with INTEGRAL and Swift. This considerably extends the pulse period history and covers flaring episodes in 2005 and 2008. In 2006 the source was identified as one of only a few known symbiotic X-ray binaries (SyXBs), i.e., systems composed of a neutron star accreting from the inhomogeneous medium around an M-giant star. The extremely long pulse period of 5.3 hr is directly visible in the 2008 INTEGRAL-ISGRI outburst light curve. The pulse profile is double peaked and generally not significantly energy dependent although there is an indication of possible softening during the main pulse. During the outburst a strong spin-up of -1.8 10^(-4) hr hr^(-1) occurred. Between 2005 and 2008 a long-term spin-down trend of 2.1 10^-5 hr hr^(-1) was observed for the first time for this source. The 3-80 keV pulse peak spectrum of 3A 1954+319 during the 2008 flare could be well described by a thermal Comptonization model. We interpret the results within the framework of a recently developed quasi-spherical accretion model for SyXBs.
96 - T.G. Wang , T. Mihara 1999
We present a detailed analysis of broad band X-ray data of the Seyfert 2 galaxy NGC5506. 2-10 keV band are detected during a 1-day ASCA observation, while no significant change in the 2-10 keV continuum shape is found. The ASCA spectrum consists of an absorbed power-law, a soft excess below 2 keV, and an Fe K$alpha$ emission line at 6.4 keV. The soft excess can be well described by either thermal emission from very low abundance material at a temperature kT$simeq$0.8 keV, or scattered/leaking flux from the primary power-law plus a small amount of thermal emission. Analysis of ROSAT HRI data reveals that the soft X-ray emission is extended on kpc scales in this object, and the extended component may account for most of the soft X-ray excess observed by the ASCA. The result suggests that in this type 2 AGN, the soft excess at least partly comes from an extended region, imposing serious problem for the model in which the source is partially covered. Fe K$alpha$ profile is complex and can not be satisfactorily modeled by a single gaussian. Models of either double gaussians, or a narrow gaussian plus a line from a relativistic accretion disk viewed at an inclination of about 40$pm10^circ$ provide good fits to the data. However, the inclination of the disk can be substantially larger if there is a small amount of excessive Fe K edge absorption. The intermediate inclinations for NLXGs are consistent with the ideas that the inner accretion disk is aligned with the outer obscuring torus.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا