No Arabic abstract
We present a detailed analysis of broad band X-ray data of the Seyfert 2 galaxy NGC5506. 2-10 keV band are detected during a 1-day ASCA observation, while no significant change in the 2-10 keV continuum shape is found. The ASCA spectrum consists of an absorbed power-law, a soft excess below 2 keV, and an Fe K$alpha$ emission line at 6.4 keV. The soft excess can be well described by either thermal emission from very low abundance material at a temperature kT$simeq$0.8 keV, or scattered/leaking flux from the primary power-law plus a small amount of thermal emission. Analysis of ROSAT HRI data reveals that the soft X-ray emission is extended on kpc scales in this object, and the extended component may account for most of the soft X-ray excess observed by the ASCA. The result suggests that in this type 2 AGN, the soft excess at least partly comes from an extended region, imposing serious problem for the model in which the source is partially covered. Fe K$alpha$ profile is complex and can not be satisfactorily modeled by a single gaussian. Models of either double gaussians, or a narrow gaussian plus a line from a relativistic accretion disk viewed at an inclination of about 40$pm10^circ$ provide good fits to the data. However, the inclination of the disk can be substantially larger if there is a small amount of excessive Fe K edge absorption. The intermediate inclinations for NLXGs are consistent with the ideas that the inner accretion disk is aligned with the outer obscuring torus.
We present results on the hard X-ray emission of NGC 5506, the brightest narrow line Seyfert 1 galaxy above 20 keV. All the recent observations by INTEGRAL, Swift and Suzaku have been analysed and spectral analysis during nine separated time periods has been performed. While flux variations by a factor of 2 were detected during the last 7 years, only moderate spectral variations have been observed, with the hint of a hardening of the X-ray spectrum and a decrease of the intrinsic absorption with time. Using Suzaku observations it is possible to constrain the amount of Compton reflection to R = 0.6-1.0, in agreement with previous results on the source. The signature of Comptonisation processes can also be found in the detection of a high-energy cut-off during part of the observations, at Ec = 40-100 keV. When a Comptonisation model is applied to the Suzaku data, the temperature and the optical depth of the Comptonising electron plasma are measured at kT = 60-80 keV and tau = 0.6-1.0, respectively. The properties inferred for NGC 5506 in this study agree with those based on other data sets for the same AGN, and fit the picture of NLS1 having in general lower high-energy cut-offs at hard X-rays than their broad line equivalent.
We present a study of the central engine in the broad-line radio galaxy 3C 109. To investigate the immediate surrounding of this accreting, supermassive black hole, we perform a multi-epoch broad-band spectral analysis of a joint NuSTAR/XMM observation (2017), an archival xmm observation (2005) and the 105-month averaged Swift-BAT data. We are able to clearly separate the spectrum into a primary continuum, neutral and ionized absorption, and a reflection component. The photon index of the primary continuum has changed since 2005 ($Gamma = 1.61 substack{+0.02 -0.01} rightarrow 1.54 pm{0.02}$), while other components remain unchanged, indicative of minimal geometric changes to the central engine. We constrain the high-energy cutoff of 3C 109 (E$_{text{cut}}= 49 substack{+7 -5}$,keV ) for the first time. The reflector is found to be ionized (log $xi$ = $2.3 substack{+0.1 -0.2}$) but no relativistic blurring is required by the data. SED analysis confirms the super-Eddington nature of 3C 109 initially ($lambda_{Edd} >$ 2.09). However, we do not find any evidence for strong reflection (R = $0.18 substack{+0.04 -0.03}$) or a steep power law index, as expected from a super-Eddington source. This puts the existing virial mass estimate of 2 $times 10^{8}$M$_{odot}$ into question. We explore additional ways of estimating the Eddington ratio, some of which we find to be inconsistent with our initial SED estimate. We obtain a new black hole mass estimate of 9.3 $times 10^{8}$M$_{odot}$, which brings all Eddington ratio estimates into agreement and does not require 3C 109 to be super-Eddington.
We present an ASCA observation of the broad line radio galaxy 3C111. The X-ray spectrum is well described by a model consisting of a photoelectrically-absorbed power-law form. The inferred absorbing column density is significantly greater than expected on the basis of 21-cm measurements of Galactic HI. Whilst this may be due intrinsic absorption from a circumnuclear torus or highly warped accretion disk, inhomogeneities and molecular gas within the foreground giant molecular cloud may also be responsible for some of this excess absorption. We also claim a marginal detection of a broad iron Ka line which is well explained as being a fluorescent line originating from the central regions of a radiatively-efficient accretion disk. This line appears weak in comparison to those found in (radio-quiet) Seyfert nuclei. We briefly discuss the implications of this fact.
This paper presents the results of a dense and intensive X-ray and optical monitoring of the narrow-line Seyfert 1 galaxy NGC 4051 carried out in 2000. Results of the optical analysis are consistent with previous measurements. The amplitude of optical emission line variability is a factor of two larger than that of the underlying optical continuum, but part or all of the difference can be due to host-galaxy starlight contamination or due to the lines being driven by the unseen UV continuum, which is more variable than the optical continuum. We measured the lag between optical lines and continuum and found a lower, more accurate broad line region size of 3.0+-1.5 light days in this object. The implied black hole mass is M_BH=5(+6,-3)x10^5 M_sun; this is the lowest mass found, so far, for an active nucleus. We find significant evidence for an X-ray-optical (XO) correlation with a peak lag of about <1 day, although the centroid of the asymmetric correlation function reveals that part of the optical flux varies in advance of the X-ray flux by 2.4+-1.0 days. This complex XO correlation is explained as a possible combination of X-ray reprocessing and perturbations propagating from the outer (optically emitting) parts of the accretion disc into its inner (X-ray emitting) region.
NuSTAR observed the bright Compton-thin, narrow line Seyfert 1 galaxy, NGC 5506, for about 56 ks. In agreement with past observations, the spectrum is well fit by a power law with Gamma~1.9, a distant reflection component and narrow ionized iron lines. A relativistically blurred reflection component is not required by the data. When an exponential high energy cutoff is added to the power law, a value of 720(+130,-190) keV (90% confidence level) is found. Even allowing for systematic uncertainties, we find a 3 sigma lower limit to the high-energy cutoff of 350 keV, the highest lower limit to the cutoff energy found so far in an AGN by NuSTAR.