Do you want to publish a course? Click here

A Comparison of the Variability of the Symbiotic X-ray Binaries GX 1+4, 4U 1954+31, and 4U 1700+24 from Swift/BAT and RXTE/ASM Observations

339   0   0.0 ( 0 )
 Added by Robin Corbet
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of the X-ray variability of three symbiotic X-ray binaries, GX 1+4, 4U 1700+24, and 4U 1954+31, using observations made with the Swift Burst Alert Telescope (BAT) and the Rossi X-ray Timing Explorer (RXTE) All-Sky Monitor (ASM). Observations of 4U 1954+31 with the Swift BAT show modulation at a period near 5 hours. Models to explain this modulation are discussed including the presence of an exceptionally slow X-ray pulsar in the system and accretion instabilities. We conclude that the most likely interpretation is that 4U 1954+31 contains one of the slowest known X-ray pulsars. Unlike 4U 1954+31, neither GX 1+4 nor 4U 1700+24 show any evidence for modulation on a timescale of hours. An analysis of the RXTE ASM light curves of GX 1+4, 4U 1700+24, and 4U 1954+31 does not show the presence of periodic modulation in any source, although there is considerable variability on long timescales for all three sources. There is no modulation in GX 1+4 on either the optical 1161 day orbital period or a previously reported 304 day X-ray period. For 4U 1700+24 we do not confirm the 404 day X-ray period previously proposed for this source from a shorter duration ASM light curve. We conclude that all three sources have substantial low-frequency noise in their power spectra that may give the appearance of periodic modulation if this noise is not properly accounted for, particularly if short duration light curves are examined.



rate research

Read More

(Abridged) We present results of several X-ray observations of the X-ray binary 4U 1954+31 performed with the satellites BeppoSAX, EXOSAT, ROSAT, RXTE, and Swift. We also studied the RXTE ASM data over a period of more than 10 years. Light curves of all observations show an erratic behaviour with sudden increases in the source emission on timescales variable from hundreds to thousands of seconds. There are no indications of changes in the source spectral hardness, with the possible exception of the RXTE pointed observation. Timing analysis does not reveal the presence of coherent pulsations or periodicities either in the pointed observations in the range from 2 ms to 2000 s or in the long-term RXTE ASM light curve on timescales from days to years. The 0.2-150 keV spectrum, obtained with BeppoSAX, is the widest for this source available to date in terms of spectral coverage and is well described by a model consisting of a lower-energy thermal component (hot diffuse gas) plus a higher-energy (Comptonization) emission, with the latter modified by a partially-covering cold absorber plus a warm (ionized) absorber. A blackbody modelization of our BeppoSAX low-energy data is ruled out. The presence of a complex absorber local to the source is also supported by the 0.1-2 keV ROSAT spectrum. RXTE, EXOSAT and Swift X-ray spectroscopy is consistent with the above results, but indicates variations in the density and the ionization of the local absorber. A 6.5 keV emission line is possibly detected in the BeppoSAX and RXTE spectra. All this information suggests that the scenario that better describes 4U 1954+31 consists of a binary system in which a neutron star orbits in a highly inhomogeneus medium from a stellar wind coming from its optical companion, an M-type giant star.
The X-ray binary 4U 1954+31 has been classified as a Low Mass X-ray Binary (LMXB) containing a M giant and a neutron star (NS). It has also been included in the rare class of X-ray symbiotic binaries (SyXB). The Gaia parallax, infrared colors, spectral type, abundances, and orbital properties of the M star demonstrate that the cool star in this system is not a low mass giant but a high mass M supergiant. Thus, 4U 1954+31 is a High Mass X-ray Binary (HMXB) containing a late-type supergiant. It is the only known binary system of this type. The mass of the M I is 9$^{+6}_{-2}$ M$_odot$ giving an age of this system in the range 12 - 50 Myr with the NS no more than 43 Myr old. The spin period of the NS is one of the longest known, 5 hours. The existence of M I plus NS binary systems is in accord with stellar evolution theory, with this system a more evolved member of the HMXB population.
120 - Elena Seifina 2016
We present an X-ray spectral analysis of the high-mass binary 4U~1700-37 during its hard-soft state evolution. We use the BeppoSAX, Suzaku and RXTE (Rossi X-ray Timing Explorer), Suzaku and BeppoSAX observations for this investigation. We argue that the X-ray broad-band spectra during all spectral states can be adequately reproduced by a model, consisting of a low-temperature Blackbody component, two Comptonized components both due to the presence of a Compton cloud (CC) that up-scatters seed photons of $T_{s1}$~< 1.4 keV, and $T_{s2}<$1 keV, and an iron-line component. We find using this model that the photon power-law index is almost constant, $Gamma_{1}sim 2$ for all spectral states. However, $Gamma_{2}$ shows a behavior depending on the spectral state. Namely, $Gamma_{2}$ is quasi-constant at the level of $Gamma_{2}sim 2$ while the CC plasma temperature $kT^{(2)}_e$ is less than 40 keV; on the other hand, $Gamma_{2}$ is in the range of $1.3<Gamma_{2}<2$, when $kT^{(2)}_e$ is greater than 40 keV. We explain this quasi-stability of $Gamma$ during most of hard-soft transitions of 4U~1700-37 in a framework of the model in which the resulting spectrum is described by two Comptonized components. We find that these Comptonized spectral components of the HMXB 4U~1700-37 are similar to those previously found in NS sources. This index dependence versus both mass accretion rate and $kT_e$ revealed in 4U~1700-37 is a universal observational evidence for the presence of a NS in 4U 1700-37.
Atoll sources are accreting neutron star (NS) low-mass X-ray binaries. We present a spectral analysis of four persistent atoll sources (GX 3+1, 4U 1702$-$429, 4U 0614+091, and 4U 1746$-$371) observed for $sim20$ ks each with NuSTAR to determine the extent of the inner accretion disk. These sources range from an apparent luminosity of $0.006-0.11$ of the Eddington limit (assuming the empirical limit of $3.8times10^{38}$ ergs s$^{-1}$). Broad Fe emission features shaped by Doppler and relativistic effects close to the NS were firmly detected in three of these sources. The position of the disk appears to be close to the innermost stable circular orbit (ISCO) in each case. For GX 3+1, we determine $R_{in}=1.8^{+0.2}_{-0.6} R_{mathrm{ISCO}}$ (90% confidence level) and an inclination of $27^{circ}-31^{circ}$. For 4U 1702$-$429, we find a $R_{in}=1.5_{-0.4}^{+1.6} R_{mathrm{ISCO}}$ and inclination of $53^{circ}-64^{circ}$. For 4U 0614+091, the disk has a position of $R_{in}=1.3_{-0.2}^{+5.4} R_{mathrm{ISCO}}$ and inclination of $50^{circ}-62^{circ}$. If the disk does not extend to the innermost stable circular orbit, we can place conservative limits on the magnetic field strength in these systems in the event that the disk is truncated at the Alfv{e}n radius. This provides the limit at the poles of $Bleq6.7times10^{8}$ G, $3.3times10^{8}$ G, and $14.5times10^{8}$ G for GX 3+1, 4U 1702$-$429, and 4U 0614+091, respectively. For 4U 1746$-$371, we argue that the most plausible explanation for the lack of reflection features is a combination of source geometry and strong Comptonization. We place these sources among the larger sample of NSs that have been observed with NuSTAR.
Context. GX 1+4 belongs to a rare class of X-ray binaries with red giant donors, symbiotic X-ray binaries. The system has a history of complicated variability on multiple timescales in the optical light and X-rays. The nature of this variability remains poorly understood. Aims. We study variability of GX 1+4 on long time-scale in X-ray and optical bands. Methods. The presented X-ray observations are from INTEGRAL Soft Gamma-Ray Imager and RXTE All Sky Monitor. The optical observations are from INTEGRAL Optical Monitoring Camera. Results. The variability of GX 1+4 both in optical light and hard X-ray emission (>17 keV) is dominated by ~50-70d quasi-periodic changes. The amplitude of this variability is highest during the periastron passage, while during the potential neutron star eclipse the system is always at minimum, which confirms the 1161d orbital period that has had been proposed for the system based on radial velocity curve. Neither the quasi-periodic variability or the orbital period are detected in soft X-ray emission (1.3-12.2 keV), where the binary shows no apparent periodicity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا