Do you want to publish a course? Click here

Spectral and Timing Nature of the Symbiotic X-ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in an X-ray Binary System

95   0   0.0 ( 0 )
 Added by Teruaki Enoto
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The symbiotic X-ray binary 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its ~5.4h NS spin period is the longest among all known accretion-powered pulsars and exhibited large (~7%) fluctuations over 8 years. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe Kalpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (~60-80%), and the location in the Corbet diagram favor high B-field (>~1e+12 G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (1e+33-1e+35 erg/s), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a ~1e+13 G NS, this scheme can explain the ~5.4 h equilibrium rotation without employing the magnetar-like field (~1e+16 G) required in the disk accretion case. The time-scales of multiple irregular flares (~50 s) can also be attributed to the free-fall time from the Alfven shell for a ~1e+13 G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.



rate research

Read More

We present an analysis of the highly variable accreting X-ray pulsar 3A 1954+319 using 2005-2009 monitoring data obtained with INTEGRAL and Swift. This considerably extends the pulse period history and covers flaring episodes in 2005 and 2008. In 2006 the source was identified as one of only a few known symbiotic X-ray binaries (SyXBs), i.e., systems composed of a neutron star accreting from the inhomogeneous medium around an M-giant star. The extremely long pulse period of 5.3 hr is directly visible in the 2008 INTEGRAL-ISGRI outburst light curve. The pulse profile is double peaked and generally not significantly energy dependent although there is an indication of possible softening during the main pulse. During the outburst a strong spin-up of -1.8 10^(-4) hr hr^(-1) occurred. Between 2005 and 2008 a long-term spin-down trend of 2.1 10^-5 hr hr^(-1) was observed for the first time for this source. The 3-80 keV pulse peak spectrum of 3A 1954+319 during the 2008 flare could be well described by a thermal Comptonization model. We interpret the results within the framework of a recently developed quasi-spherical accretion model for SyXBs.
(Abridged) We present results of several X-ray observations of the X-ray binary 4U 1954+31 performed with the satellites BeppoSAX, EXOSAT, ROSAT, RXTE, and Swift. We also studied the RXTE ASM data over a period of more than 10 years. Light curves of all observations show an erratic behaviour with sudden increases in the source emission on timescales variable from hundreds to thousands of seconds. There are no indications of changes in the source spectral hardness, with the possible exception of the RXTE pointed observation. Timing analysis does not reveal the presence of coherent pulsations or periodicities either in the pointed observations in the range from 2 ms to 2000 s or in the long-term RXTE ASM light curve on timescales from days to years. The 0.2-150 keV spectrum, obtained with BeppoSAX, is the widest for this source available to date in terms of spectral coverage and is well described by a model consisting of a lower-energy thermal component (hot diffuse gas) plus a higher-energy (Comptonization) emission, with the latter modified by a partially-covering cold absorber plus a warm (ionized) absorber. A blackbody modelization of our BeppoSAX low-energy data is ruled out. The presence of a complex absorber local to the source is also supported by the 0.1-2 keV ROSAT spectrum. RXTE, EXOSAT and Swift X-ray spectroscopy is consistent with the above results, but indicates variations in the density and the ionization of the local absorber. A 6.5 keV emission line is possibly detected in the BeppoSAX and RXTE spectra. All this information suggests that the scenario that better describes 4U 1954+31 consists of a binary system in which a neutron star orbits in a highly inhomogeneus medium from a stellar wind coming from its optical companion, an M-type giant star.
The X-ray binary 4U 1954+31 has been classified as a Low Mass X-ray Binary (LMXB) containing a M giant and a neutron star (NS). It has also been included in the rare class of X-ray symbiotic binaries (SyXB). The Gaia parallax, infrared colors, spectral type, abundances, and orbital properties of the M star demonstrate that the cool star in this system is not a low mass giant but a high mass M supergiant. Thus, 4U 1954+31 is a High Mass X-ray Binary (HMXB) containing a late-type supergiant. It is the only known binary system of this type. The mass of the M I is 9$^{+6}_{-2}$ M$_odot$ giving an age of this system in the range 12 - 50 Myr with the NS no more than 43 Myr old. The spin period of the NS is one of the longest known, 5 hours. The existence of M I plus NS binary systems is in accord with stellar evolution theory, with this system a more evolved member of the HMXB population.
The persistently bright ultra-compact neutron star low-mass X-ray binary 4U 1820$-$30 displays a $sim$170 d accretion cycle, evolving between phases of high and low X-ray modes, where the 3 -- 10 keV X-ray flux changes by a factor of up to $approx 8$. The source is generally in a soft X-ray spectral state, but may transition to a harder state in the low X-ray mode. Here, we present new and archival radio observations of 4U 1820$-$30 during its high and low X-ray modes. For radio observations taken within a low mode, we observed a flat radio spectrum consistent with 4U 1820$-$30 launching a compact radio jet. However, during the high X-ray modes the compact jet was quenched and the radio spectrum was steep, consistent with optically-thin synchrotron emission. The jet emission appeared to transition at an X-ray luminosity of $L_{rm X (3-10 keV)} sim 3.5 times 10^{37} (D/rm{7.6 kpc})^{2}$ erg s$^{-1}$. We also find that the low-state radio spectrum appeared consistent regardless of X-ray hardness, implying a connection between jet quenching and mass accretion rate in 4U 1820$-$30, possibly related to the properties of the inner accretion disk or boundary layer.
We report on the first simultaneous $NICER$ and $NuSTAR$ observations of the neutron star (NS) low-mass X-ray binary 4U 1735$-$44, obtained in 2018 August. The source was at a luminosity of $sim1.8~(D/5.6 mathrm{kpc})^{2}times10^{37}$ ergs s$^{-1}$ in the $0.4-30$ keV band. We account for the continuum emission with two different continuum descriptions that have been used to model the source previously. Despite the choice in continuum model, the combined passband reveals a broad Fe K line indicative of reflection in the spectrum. In order to account for the reflection spectrum we utilize a modified version of the reflection model RELXILL that is tailored for thermal emission from accreting NSs. Alternatively, we also use the reflection convolution model of RFXCONV to model the reflected emission that would arise from a Comptonized thermal component for comparison. We determine that the innermost region of the accretion disk extends close to the innermost stable circular orbit ($R_{mathrm{ISCO}}$) at the 90% confidence level regardless of reflection model. Moreover, the current flux calibration of $NICER$ is within 5% of the $NuSTAR$/FPMA(B).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا