Do you want to publish a course? Click here

The Spitzer View of Low-Metallicity Star Formation: I. Haro 3

132   0   0.0 ( 0 )
 Added by Yuri Izotov I.
 Publication date 2006
  fields Physics
and research's language is English
 Authors L. K. Hunt




Ask ChatGPT about the research

We present Spitzer observations of the blue compact dwarf galaxy (BCD) Haro 3, with an oxygen abundance of 12+log(O/H)=8.32. These data are part of a larger study of star formation and dust in low-metallicity environments.The IRS spectrum of Haro 3 shows strong narrow Polycyclic Aromatic Hydrocarbon (PAH) emission, with high equivalent widths. Gaseous nebular fine-structure lines are also seen. Despite the absence of optical high-excitation lines, a faint high-ionization [O IV] line at 25.89 micron indicates the presence of radiation as hard as 54.9 eV. A CLOUDY model suggests that the MIR lines originate in two regions: a low-extinction optically-emitting region, and an optically invisible one with much higher extinction. The morphology of Haro 3 changes with wavelength. IRAC 4.5 micron traces extended stellar photospheric emission from the body of the galaxy and hot dust continuum coming mainly from star-forming regions; 8 micron probes extended PAH emission coming mainly from the general ISM; MIPS 24 and 70 micron images map compact small-grain warm dust emission associated with active star formation, and 160 micron reflects cooler extended dust associated with older stellar populations. We have derived the optical-to-radio spectral energy distribution (SED) of the brightest star-forming region A in Haro 3. The best-fit DUSTY model of the SED gives a total luminosity of 2.8e9 Lsun and a mass of 2.8e6 Msun for the ionizing clusters. We infer an extinction A(V)<3, intermediate between the optical A(V)~0.5 and the radio A(V)~8, consistent with the picture that longer wavelength observations probe more deeply into star-forming regions.



rate research

Read More

(abridged) We present new Spitzer, UKIRT and MMT observations of the blue compact dwarf galaxy (BCD) Mrk 996, with an oxygen abundance of 12+log(O/H)=8.0. This galaxy has the peculiarity of possessing an extraordinarily dense nuclear star-forming region, with a central density of ~10^6 cm^{-3}. The nuclear region of Mrk 996 is characterized by several unusual properties: a very red color J-K = 1.8, broad and narrow emission-line components, and ionizing radiation as hard as 54.9 eV, as implied by the presence of the OIV 25.89 micron line. The nucleus is located within an exponential disk with colors consistent with a single stellar population of age >1 Gyr. The infrared morphology of Mrk 996 changes with wavelength. The IRS spectrum shows strong narrow Polycyclic Aromatic Hydrocarbon (PAH) emission, with narrow line widths and equivalent widths that are high for the metallicity of Mrk 996. Gaseous nebular fine-structure lines are also seen. A CLOUDY model requires that they originate in two distinct HII regions: a very dense HII region of radius ~580 pc with densities declining from ~10^6 at the center to a few hundreds cm^{-3} at the outer radius, where most of the optical lines arise; and a HII region with a density of ~300 cm^{-3} that is hidden in the optical but seen in the MIR. We suggest that the infrared lines arise mainly in the optically obscured HII region while they are strongly suppressed by collisional deexcitation in the optically visible one. The hard ionizing radiation needed to account for the OIV 25.89 micron line is most likely due to fast radiative shocks propagating in an interstellar medium. A hidden population of Wolf-Rayet stars of type WNE-w or a hidden AGN as sources of hard ionizing radiation are less likely possibilities.
We present a simplified chemical and thermal model designed to allow computationally efficient study of the thermal evolution of metal-poor gas within large numerical simulations. Our main simplification is the neglect of the molecular chemistry of the heavy elements. The only molecular chemistry retained within the model is the formation and destruction of molecular hydrogen. Despite this major simplification, the model allows for accurate treatment of the thermal evolution of the gas within a large volume of parameter space. It is valid for temperatures 50 < T < 10000 K and metallicities 0 < Z < 0.1 Z_solar. In gas with a metallicity Z = 0.1 Z_solar, and in the absence of an incident ultraviolet radiation field, it is valid for hydrogen number densities n_H < 500 / t_char cm^-3, where t_char is the size in Myr of the characteristic physical timescale of interest in the problem. If Z << 0.1 Z_solar, or if a strong ultraviolet radiation field is present, then the model remains accurate up to significantly higher densities. We also discuss some possible applications of this model.
Understanding how young stars and their circumstellar disks form and evolve is key to explain how planets form. The evolution of the star and the disk is regulated by different processes, both internal to the system or related to their environment. The former include accretion of material onto the central star, wind emission, and photoevaporation of the disk due to high-energy radiation from the central star. These are best studied spectroscopically, and the distance to the star is a key parameter in all these studies. Here we present new estimates of the distance to a complex of nearby star-forming clouds obtained combining TGAS distances with measurement of extinction on the line of sight. Furthermore, we show how we plan to study the effects of the environment on the evolution of disks with Gaia, using a kinematic modelling code we have developed to model young star-forming regions.
280 - L. M. Young 2008
Many early-type galaxies are detected at 24 to 160 micron but the emission is usually dominated by an AGN or heating from the evolved stellar population. Here we present MIPS observations of a sample of elliptical and lenticular galaxies which are rich in cold molecular gas, and we investigate how much of the MIR to FIR emission could be due to star formation activity. The 24 micron images show a rich variety of structures, including nuclear point sources, rings, disks, and smooth extended emission, and comparisons to matched-resolution CO and radio continuum images suggest that the bulk of the 24 micron emission can be traced to star formation. The star formation efficiencies are comparable to those found in normal spirals. Some future directions for progress are also mentioned.
(Abridged) Far ultraviolet to far infrared images of the nearby galaxy NGC5194, from Spitzer, GALEX, Hubble Space Telescope and ground--based data, are used to investigate local and global star formation, and the impact of dust extinction in HII-emitting knots. In the IR/UV-UV color plane, the NGC5194 HII knots show the same trend observed for normal star-forming galaxies, having a much larger dispersion than starburst galaxies. We identify the dispersion as due to the UV emission predominantly tracing the evolved, non-ionizing stellar population, up to ages 50-100 Myr. While in starbursts the UV light traces the current SFR, in NGC5194 it traces a combination of current and recent-past SFR. Unlike the UV emission, the monochromatic 24 micron luminosity is an accurate local SFR tracer for the HII knots in NGC5194; this suggests that the 24 micron emission carriers are mainly heated by the young, ionizing stars. However, preliminary results show that the ratio of the 24 micron emission to the SFR varies by a factor of a few from galaxy to galaxy. While also correlated with star formation, the 8 micron emission is not directly proportional to the number of ionizing photons. This confirms earlier suggestions that the carriers of the 8 micron emission are heated by more than one mechanism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا