Do you want to publish a course? Click here

Gaia view of low-mass star formation

131   0   0.0 ( 0 )
 Added by Carlo Felice Manara
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding how young stars and their circumstellar disks form and evolve is key to explain how planets form. The evolution of the star and the disk is regulated by different processes, both internal to the system or related to their environment. The former include accretion of material onto the central star, wind emission, and photoevaporation of the disk due to high-energy radiation from the central star. These are best studied spectroscopically, and the distance to the star is a key parameter in all these studies. Here we present new estimates of the distance to a complex of nearby star-forming clouds obtained combining TGAS distances with measurement of extinction on the line of sight. Furthermore, we show how we plan to study the effects of the environment on the evolution of disks with Gaia, using a kinematic modelling code we have developed to model young star-forming regions.



rate research

Read More

83 - Jonathan C. Tan 2015
I review theoretical models of star formation and how they apply across the stellar mass spectrum. Several distinct theories are under active study for massive star formation, especially Turbulent Core Accretion, Competitive Accretion and Protostellar Mergers, leading to distinct observational predictions. These include the types of initial conditions, the structure of infall envelopes, disks and outflows, and the relation of massive star formation to star cluster formation. Even for Core Accretion models, there are several major uncertainties related to the timescale of collapse, the relative importance of different processes for preventing fragmentation in massive cores, and the nature of disks and outflows. I end by discussing some recent observational results that are helping to improve our understanding of these processes.
Star formation is a multi-scale, multi-physics problem ranging from the size scale of molecular clouds ($sim$10s pc) down to the size scales of dense prestellar cores ($sim$0.1 pc) that are the birth sites of stars. Several physical processes like turbulence, magnetic fields and stellar feedback, such as radiation pressure and outflows, are more or less important for different stellar masses and size scales. During the last decade a variety of technological and computing advances have transformed our understanding of star formation through the use of multi-wavelength observations, large scale observational surveys, and multi-physics multi-dimensional numerical simulations. Additionally, the use of synthetic observations of simulations have provided a useful tool to interpret observational data and evaluate the importance of various physical processes on different scales in star formation. Here, we review these recent advancements in both high- ($M gtrsim 8 , M_{rm odot}$) and low-mass star formation.
We report on the first birds-eye view of the innermost accretion disk around the high-mass protostellar object G353.273+0.641, taken by Atacama Large Millimter/submillimeter Array long-baselines. The disk traced by dust continuum emission has a radius of 250 au, surrounded by the infalling rotating envelope traced by thermal CH$_3$OH lines. This disk radius is consistent with the centrifugal radius estimated from the specific angular momentum in the envelope. The lower-limit envelope mass is $sim$5-7 M$_{odot}$ and accretion rate onto the stellar surface is 3 $times$ 10$^{-3}$ M$_{odot}$ yr$^{-1}$ or higher. The expected stellar age is well younger than 10$^{4}$ yr, indicating that the host object is one of the youngest high-mass objects at present. The disk mass is 2-7 M$_{odot}$, depending on the dust opacity index. The estimated Toomres $Q$ parameter is typically 1-2 and can reach 0.4 at the minimum. These $Q$ values clearly satisfy the classical criteria for the gravitational instability, and are consistent with the recent numerical studies. Observed asymmetric and clumpy structures could trace a spiral arm and/or disk fragmentation. We found that 70$%$ of the angular momentum in the accretion flow could be removed via the gravitational torque in the disk. Our study has indicated that the dynamical nature of a self-gravitating disk could dominate the early phase of high-mass star formation. This is remarkably consistent with the early evolutionary scenario of a low-mass protostar.
We have undertaken a systematic study of pre-main sequence (PMS) stars spanning a wide range of masses (0.5 - 4 Msolar), metallicities (0.1 - 1 Zsolar) and ages (0.5 - 30 Myr). We have used the Hubble Space Telescope (HST) to identify and characterise a large sample of PMS objects in several star-forming regions in the Magellanic Clouds, namely 30 Dor and the SN 1987A field in the LMC, and NGC 346 and NGC 602 in the SMC, and have compared them to PMS stars in similar regions in the Milky Way, such as NGC 3603 and Trumpler 14, which we studied with the HST and Very Large Telescope (VLT). We have developed a novel method that combines broad-band (V, I) photometry with narrow-band Halpha imaging to determine the physical parameters (temperature, luminosity, age, mass and mass accretion rate) of more than 3000 bona-fide PMS stars still undergoing active mass accretion. This is presently the largest and most homogeneous sample of PMS objects with known physical properties and includes not only very young objects, but also PMS stars older than 10 - 20 Myr that are approaching the main sequence (MS). We find that the mass accretion rate scales roughly with the square root of the age, with the mass of the star to the power of 1.5, and with the inverse of the cube root of the metallicity. The mass accretion rates for stars of the same mass and age are thus systematically higher in the Magellanic Clouds than in the Milky Way. These results are bound to have important implications for, and constraints on our understanding of the star formation process.
We study the formation and the kinematic evolution of the early type Herbig Be star IL Cep and its environment. The young star is a member of the Cep OB3 association, at a distance of 798$pm$9 pc, and has a cavity associated with it. We found that the B0V star HD 216658, which is astrometrically associated with IL Cep, is at the center of the cavity. From the evaluation of various pressure components created by HD 216658, it is established that the star is capable of creating the cavity. We identified 79 co-moving stars of IL Cep at 2 pc radius from the analysis of {textit Gaia} EDR3 astrometry. The transverse velocity analysis of the co-moving stars shows that they belong to two different populations associated with IL Cep and HD 216658, respectively. Further analysis confirms that all the stars in the IL Cep population are mostly coeval ($sim$ 0.1 Myr). Infrared photometry revealed that there are 26 Class II objects among the co-moving stars. The stars without circumstellar disk (Class III) are 65% of all the co-moving stars. There are 9 intense H$alpha$ emission candidates identified among the co-moving stars using IPHAS H$alpha$ narrow-band photometry. The dendrogram analysis on the Hydrogen column density map identified 11 molecular clump structures on the expanding cavity around IL Cep, making it an active star-forming region. The formation of the IL Cep stellar group due to the rocket effect by HD 216658 is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا