No Arabic abstract
(Abridged) Far ultraviolet to far infrared images of the nearby galaxy NGC5194, from Spitzer, GALEX, Hubble Space Telescope and ground--based data, are used to investigate local and global star formation, and the impact of dust extinction in HII-emitting knots. In the IR/UV-UV color plane, the NGC5194 HII knots show the same trend observed for normal star-forming galaxies, having a much larger dispersion than starburst galaxies. We identify the dispersion as due to the UV emission predominantly tracing the evolved, non-ionizing stellar population, up to ages 50-100 Myr. While in starbursts the UV light traces the current SFR, in NGC5194 it traces a combination of current and recent-past SFR. Unlike the UV emission, the monochromatic 24 micron luminosity is an accurate local SFR tracer for the HII knots in NGC5194; this suggests that the 24 micron emission carriers are mainly heated by the young, ionizing stars. However, preliminary results show that the ratio of the 24 micron emission to the SFR varies by a factor of a few from galaxy to galaxy. While also correlated with star formation, the 8 micron emission is not directly proportional to the number of ionizing photons. This confirms earlier suggestions that the carriers of the 8 micron emission are heated by more than one mechanism.
We present the photometric catalogs for the star-forming cluster NGC 602 in the wing of the Small Magellanic Cloud covering a range of wavelengths from optical HST/ACS (F555W, F814W) and SMARTS/ANDICAM (V, I) to infrared (Spitzer/IRAC 3.6, 4.5, 5.8, and 8 micron and MIPS 24 micron). Combining this with IRSF (InfraRed Survey Facility) near-infrared photometry (J, H, Ks), we compare the young main sequence (MS) and pre-main sequence (PMS) populations prominent in the optical with the current young stellar object (YSO) populations revealed by the infrared (IR). We analyze the MS and PMS population with isochrones in color-magnitude diagrams to derive ages and masses. The optical data reveal ~565 PMS candidates, low mass Stage III YSOs. We characterize ~40 YSOs by fitting their spectral energy distributions (SEDs) to a grid of models (Robitaille et al. 2007) to derive luminosities, masses and evolutionary phase (Stage I-III). The higher resolution HST images reveal that ~70% of the YSO candidates are either multiples or protoclusters. For YSOs and PMS sources found in common, we find a consistency in the masses derived. We use the YSO mass function to derive a present-day star-formation rate of ~0.2-1.0 Msun/yr/kpc^2, similar to the rate derived from the optical star formation history suggesting a constant star formation rate for this region. We demonstrate a progression of star formation from the optical star cluster center to the edge of the star forming dust cloud. We derive lifetimes of a few 10^5 years for the YSO Stages I and II.
Many early-type galaxies are detected at 24 to 160 micron but the emission is usually dominated by an AGN or heating from the evolved stellar population. Here we present MIPS observations of a sample of elliptical and lenticular galaxies which are rich in cold molecular gas, and we investigate how much of the MIR to FIR emission could be due to star formation activity. The 24 micron images show a rich variety of structures, including nuclear point sources, rings, disks, and smooth extended emission, and comparisons to matched-resolution CO and radio continuum images suggest that the bulk of the 24 micron emission can be traced to star formation. The star formation efficiencies are comparable to those found in normal spirals. Some future directions for progress are also mentioned.
We present Spitzer observations of the blue compact dwarf galaxy (BCD) Haro 3, with an oxygen abundance of 12+log(O/H)=8.32. These data are part of a larger study of star formation and dust in low-metallicity environments.The IRS spectrum of Haro 3 shows strong narrow Polycyclic Aromatic Hydrocarbon (PAH) emission, with high equivalent widths. Gaseous nebular fine-structure lines are also seen. Despite the absence of optical high-excitation lines, a faint high-ionization [O IV] line at 25.89 micron indicates the presence of radiation as hard as 54.9 eV. A CLOUDY model suggests that the MIR lines originate in two regions: a low-extinction optically-emitting region, and an optically invisible one with much higher extinction. The morphology of Haro 3 changes with wavelength. IRAC 4.5 micron traces extended stellar photospheric emission from the body of the galaxy and hot dust continuum coming mainly from star-forming regions; 8 micron probes extended PAH emission coming mainly from the general ISM; MIPS 24 and 70 micron images map compact small-grain warm dust emission associated with active star formation, and 160 micron reflects cooler extended dust associated with older stellar populations. We have derived the optical-to-radio spectral energy distribution (SED) of the brightest star-forming region A in Haro 3. The best-fit DUSTY model of the SED gives a total luminosity of 2.8e9 Lsun and a mass of 2.8e6 Msun for the ionizing clusters. We infer an extinction A(V)<3, intermediate between the optical A(V)~0.5 and the radio A(V)~8, consistent with the picture that longer wavelength observations probe more deeply into star-forming regions.
We have obtained the time and space-resolved star formation history (SFH) of M51a (NGC 5194) by fitting GALEX, SDSS, and near infrared pixel-by-pixel photometry to a comprehensive library of stellar population synthesis models drawn from the Synthetic Spectral Atlas of Galaxies (SSAG). We fit for each space-resolved element (pixel) an independent model where the SFH is averaged in 137 age bins, each one 100 Myr wide. We used the Bayesian Successive Priors (BSP) algorithm to mitigate the bias in the present-day spatial mass distribution. We test BSP with different prior probability distribution functions (PDFs); this exercise suggests that the best prior PDF is the one concordant with the spatial distribution of the stellar mass as inferred from the near infrared images. We also demonstrate that varying the implicit prior PDF of the SFH in SSAG does not affects the results. By summing the contributions to the global star formation rate of each pixel, at each age bin, we have assembled the resolved star formation history of the whole galaxy. According to these results, the star formation rate of M51a was exponentially increasing for the first 10 Gyr after the Big Bang, and then turned into an exponentially decreasing function until the present day. Superimposed, we find a main burst of star formation at t 11.9 Gyr after the Big Bang.
We use a 24 micron selected sample containing more than 8,000 sources to study the evolution of star-forming galaxies in the redshift range from z=0 to z~3. We obtain photometric redshifts for most of the sources in our survey using a method based on empirically-built templates spanning from ultraviolet to mid-infrared wavelengths. The accuracy of these redshifts is better than 10% for 80% of the sample. The derived redshift distribution of the sources detected by our survey peaks at around z=0.6-1.0 (the location of the peak being affected by cosmic variance), and decays monotonically from z~1 to z~3. We have fitted infrared luminosity functions in several redshift bins in the range 0<z<~3. Our results constrain the density and/or luminosity evolution of infrared-bright star-forming galaxies. The typical infrared luminosity (L*) decreases by an order of magnitude from z~2 to the present. The cosmic star formation rate (SFR) density goes as (1+z)^{4.0pm0.2} from z=0 to z=0.8. From z=0.8 to z~1.2, the SFR density continues rising with a smaller slope. At 1.2<z<3, the cosmic SFR density remains roughly constant. The SFR density is dominated at low redshift (z<0.5) by galaxies which are not very luminous in the infrared (L_TIR<1.e11 L_sun, where L_TIR is the total infrared luminosity, integrated from 8 to 1000 micron). The contribution from luminous and ultraluminous infrared galaxies (L_TIR>1.e11 L_sun) to the total SFR density increases steadily from z~0 up to z~2.5, forming at least half of the newly-born stars by z~1.5. Ultraluminous infrared galaxies (L_TIR>1.e12 L_sun) play a rapidly increasing role for z>~1.3.