Do you want to publish a course? Click here

VST - VLT Survey Telescope Integration Status

61   0   0.0 ( 0 )
 Added by Massimo Brescia Dr
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

The VLT Survey Telescope (VST) is a 2.6m aperture, wide field, UV to I facility, to be installed at the European Southern Observatory (ESO) on the Cerro Paranal Chile. VST was primarily intended to complement the observing capabilities of VLT with wide-angle imaging for detecting and pre-characterising sources for further observations with the VLT.



rate research

Read More

The VST (VLT Survey Telescope) is a 2.6 m Alt-Az telescope to be installed at Mount Paranal in Chile, in the European Southern Observatory (ESO) site. The VST is a wide-field imaging facility planned to supply databases for the ESO Very Large Telescope (VLT) science and carry out stand-alone observations in the UV to I spectral range. This paper will focus mainly on control software aspects, describing the VST software architecture in the context of the whole ESO VLT control concept. The general architecture and the main components of the control software will be described.
90 - T. Shanks 2015
The VLT Survey Telescope (VST) ATLAS is an optical ugriz survey aiming to cover ~4700deg^2 of the Southern sky to similar depths as the Sloan Digital Sky Survey (SDSS). From reduced images and object catalogues provided by the Cambridge Astronomical Surveys Unit we first find that the median seeing ranges from 0.8 arcsec FWHM in i to 1.0 arcsec in u, significantly better than the 1.2-1.5 arcsec seeing for SDSS. The 5 sigma magnitude limit for stellar sources is r_AB=22.7 and in all bands these limits are at least as faint as SDSS. SDSS and ATLAS are more equivalent for galaxy photometry except in the z band where ATLAS has significantly higher throughput. We have improved the original ESO magnitude zeropoints by comparing m<16 star magnitudes with APASS in gri, also extrapolating into u and z, resulting in zeropoints accurate to ~+-0.02 mag. We finally compare star and galaxy number counts in a 250deg^2 area with SDSS and other count data and find good agreement. ATLAS data products can be retrieved from the ESO Science Archive, while support for survey science analyses is provided by the OmegaCAM Science Archive (OSA), operated by the Wide-Field Astronomy Unit in Edinburgh.
49 - P. Schipani , D. Mancini 2001
The VST (VLT Survey Telescope) is a 2.6 m class Alt-Az telescope to be installed on Cerro Paranal in the Atacama desert, Northern Chile, in the European Southern Observatory (ESO) site. The VST is a wide-field imaging facility planned to supply databases for the ESO Very Large Telescope (VLT) science and carry out stand-alone observations in the UV to I spectral range. So far no telescope has been dedicated entirely to surveys; the VST will be the first survey telescope to start the operation, as a powerful survey facility for the VLT observatory. This paper will focus on the axes motion control system. The dynamic model of the telescope will be analyzed, as well as the effect of the wind disturbance on the telescope performance. Some algorithms for the telescope position control will be briefly discussed.
105 - K. Malarz , K. Kulakowski 2019
According to Peter M. Blau [Exchange and Power in Social Life, Wiley and Sons, p. 43], the process of integration of a newly formed group has a paradoxical aspect: most attractive individuals are rejected because they raise fear of rejection. Often, their solution is to apply a self-deprecating strategy, which artificially raises the social statuses of their opponents. Here we introduce a two-dimensional space of status, and we demonstrate that with this setup, the self-deprecating strategy efficiently can prevent the rejection. Examples of application of this strategy in the scale of a society are provided.
275 - S. Mangano 2017
The Cherenkov Telescope Array (CTA) will be the next generation of ground based gamma-ray telescopes allowing us to study very high energy phenomena in the Universe. CTA aims to gain about a factor of ten in sensitivity compared to current experiments, extending the accessible gamma-ray energy range from a few tens of GeV to some hundreds of TeV. This increased gamma-ray source sensitivity, as well as the expected enhanced energy and spatial resolution, will allow exciting new insights in some key science topics. Additionally, CTA will provide a full sky-coverage by featuring the array located in two sites in the Northern and Southern hemispheres. This paper will describe the status of CTA and highlight some of CTAs key science themes; namely the origin of relativistic cosmic particles, the study of cosmological effects on gamma-ray propagation and the search for annihilating dark matter particles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا