No Arabic abstract
The VST (VLT Survey Telescope) is a 2.6 m class Alt-Az telescope to be installed on Cerro Paranal in the Atacama desert, Northern Chile, in the European Southern Observatory (ESO) site. The VST is a wide-field imaging facility planned to supply databases for the ESO Very Large Telescope (VLT) science and carry out stand-alone observations in the UV to I spectral range. So far no telescope has been dedicated entirely to surveys; the VST will be the first survey telescope to start the operation, as a powerful survey facility for the VLT observatory. This paper will focus on the axes motion control system. The dynamic model of the telescope will be analyzed, as well as the effect of the wind disturbance on the telescope performance. Some algorithms for the telescope position control will be briefly discussed.
The VST (VLT Survey Telescope) is a 2.6 m Alt-Az telescope to be installed at Mount Paranal in Chile, in the European Southern Observatory (ESO) site. The VST is a wide-field imaging facility planned to supply databases for the ESO Very Large Telescope (VLT) science and carry out stand-alone observations in the UV to I spectral range. This paper will focus mainly on control software aspects, describing the VST software architecture in the context of the whole ESO VLT control concept. The general architecture and the main components of the control software will be described.
The VST (VLT Survey Telescope) is a 2.6 m class Alt-Az telescope to be installed at Mount Paranal in the Atacama desert, Chile, in the European Southern Observatory (ESO) site. The VST is a wide-field imaging facility planned to supply databases for the ESO Very Large Telescope (VLT) science and carry out stand-alone observations in the UV to I spectral range. This paper will focus on the distributed control system of active optics based on CAN bus and PIC microcontrollers. Both axial and radial pads of the primary mirror will be equipped by astatic lever supports controlled by microcontroller units. The same CAN bus + microcontroller boards approach will be used for the temperature acquisition modules.
The VLT Survey Telescope (VST) is a 2.6m aperture, wide field, UV to I facility, to be installed at the European Southern Observatory (ESO) on the Cerro Paranal Chile. VST was primarily intended to complement the observing capabilities of VLT with wide-angle imaging for detecting and pre-characterising sources for further observations with the VLT.
The servo control algorithms of the TNG, developed in the nineties, have been working for more than 20 years with no major updates. The original hardware was based on a VME-bus based platform running a real time operating system, a rather popular choice for similar applications at the time. Recently, the obsolescence of the hardware and the lack of spares pushed the observatory towards a complete replacement of the electronics that is now being implemented in steps, respecting the basic requirement of never stopping the observatory night operations. Within the framework of this major hardware work, we are taking the opportunity to review and update the existing control schemes. This servo control update, crucial for the telescope performance, envisages a new study from scratch of the controlled plant, including a re-identification of the main axes transfer functions and a re-design of the control filters in the two nested position and speed loops. The ongoing work is described, including preliminary results in the case study of the azimuth axis and our plans for possible further improvements.
We review the theory of, and develop algorithms for transforming a finite point set in ${bf R}^d$ into a set in emph{radial isotropic position} by a nonsingular linear transformation followed by rescaling each image point to the unit sphere. This problem arises in a wide spectrum of applications in computer science and mathematics. Our algorithms use gradient descent methods for a particular convex function $f$ whose minimum defines the transformation, and our main focus is on analyzing their performance. Although the minimum can be computed exactly, by expensive symbolic algebra techniques, gradient descent only approximates the desired minimum to any desired level of accuracy. We show that computing the gradient of $f$ amounts to computing the Singular Value Decomposition (SVD) of a certain matrix associated with the input set, making it simple to implement. We believe it to be superior to other approximate techniques (mainly the ellipsoid algorithm) used previously to find this transformation, and it should run much faster in practice. We prove that $f$ is smooth, which yields convergence rate proportional to $1/epsilon$, where $epsilon$ is the desired approximation accuracy. To complete the analysis, we provide upper bounds on the norm of the optimal solution which depend on new parameters measuring the degeneracy in our input. We believe that our parameters capture degeneracy better than other, seemingly weaker, parameters used in previous works. We next analyze the strong convexity of $f$, and present two worst-case lower bounds on the smallest eigenvalue of its Hessian. This gives another worst-case bound on the convergence rate of another variant of gradient decent that depends only logarithmically on $1/epsilon$.