Do you want to publish a course? Click here

Paradox of integration -- Dynamics of two-dimensional status

106   0   0.0 ( 0 )
 Added by Krzysztof Malarz
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

According to Peter M. Blau [Exchange and Power in Social Life, Wiley and Sons, p. 43], the process of integration of a newly formed group has a paradoxical aspect: most attractive individuals are rejected because they raise fear of rejection. Often, their solution is to apply a self-deprecating strategy, which artificially raises the social statuses of their opponents. Here we introduce a two-dimensional space of status, and we demonstrate that with this setup, the self-deprecating strategy efficiently can prevent the rejection. Examples of application of this strategy in the scale of a society are provided.



rate research

Read More

Recently a computational model has been proposed of the social integration, as described in sociological terms by Peter Blau. In this model, actors praise or critique each other, and these actions influence their social status and raise negative or positive emotions. The role of a self-deprecating strategy of actors with high social status has also been discussed there. Here we develop a mean field approach, where the active and passive roles (praising and being praised, etc.) are decoupled. The phase transition from friendly to hostile emotions has been reproduced, similarly to the previously applied purely computational approach. For both phases, we investigate the time dependence of the distribution of social status. There we observe a diffusive spread, which - after some transient time - appears to be limited from below or from above, depending on the phase. As a consequence, the mean status flows.
390 - Liubov Tupikina 2017
Here we developed a new conceptual, stochastic Heterogeneous Opinion-Status model (HOpS model), which is adaptive network model. The HOpS model admits to identify the main attributes of dynamics on networks and to study analytically the relation between topological network properties and processes taking place on a network. Another key point of the HOpS model is the possibility to study network dynamics via the novel parameter of heterogeneity. We show that not only clear topological network properties, such as node degree, but also, the nodes status distribution (the factor of network heterogeneity) play an important role in so-called opinion spreading and information diffusion on a network. This model can be potentially used for studying the co-evolution of globally aggregated or averaged key observables of the earth system. These include natural variables such as atmospheric, oceanic and land carbon stocks, as well as socio-economic quantities such as global human population, economic production or wellbeing.
94 - Jaykov Foukzon 2009
A Two-Spaceship Paradox in special relativity is resolved and discussed. We demonstrate a nonstandard resolution to the two-spaceship paradox by explicit calculation using Generalized Principle of limiting 4-dimensional symmetry proposed in previous paper [1].The physical and geometrical meaning of the nonholonomic transformations used in special relativity is determined.
104 - Guy Katriel 2018
We explore simple models aimed at the study of social contagion, in which contagion proceeds through two stages. When coupled with demographic turnover, we show that two-stage contagion leads to nonlinear phenomena which are not present in the basic `classical models of mathematical epidemiology. These include: bistability, critical transitions, endogenous oscillations, and excitability, suggesting that contagion models with stages could account for some aspects of the complex dynamics encountered in social life. These phenomena, and the bifurcations involved, are studied by a combination of analytical and numerical means.
114 - Jozef Genzor , Vladimir Buzek , 2014
We propose a thermodynamic multi-state spin model in order to describe equilibrial behavior of a society. Our model is inspired by the Axelrod model used in social network studies. In the framework of the statistical mechanics language, we analyze phase transitions of our model, in which the spin interaction $J$ is interpreted as a mutual communication among individuals forming a society. The thermal fluctuations introduce a noise $T$ into the communication, which suppresses long-range correlations. Below a certain phase transition point $T_t$, large-scale clusters of the individuals, who share a specific dominant property, are formed. The measure of the cluster sizes is an order parameter after spontaneous symmetry breaking. By means of the Corner transfer matrix renormalization group algorithm, we treat our model in the thermodynamic limit and classify the phase transitions with respect to inherent degrees of freedom. Each individual is chosen to possess two independent features $f=2$ and each feature can assume one of $q$ traits (e.g. interests). Hence, each individual is described by $q^2$ degrees of freedom. A single first order phase transition is detected in our model if $q>2$, whereas two distinct continuous phase transitions are found if $q=2$ only. Evaluating the free energy, order parameters, specific heat, and the entanglement von Neumann entropy, we classify the phase transitions $T_t(q)$ in detail. The permanent existence of the ordered phase (the large-scale cluster formation with a non-zero order parameter) is conjectured below a non-zero transition point $T_t(q)approx0.5$ in the asymptotic regime $qtoinfty$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا