Do you want to publish a course? Click here

Submillimeter Array Observations of CS J=14--13 Emission from the Evolved Star IRC+10216

97   0   0.0 ( 0 )
 Added by David J. Wilner
 Publication date 2004
  fields Physics
and research's language is English
 Authors K. H. Young




Ask ChatGPT about the research

We present imaging observations of the evolved star IRC+10216 in the CS J=14--13 line at 685.4 GHz and associated submillimeter continuum at about 2 resolution made with the partially constructed Submillimeter Array. The CS J=14--13 line emission from the stellar envelope is well resolved both spatially and spectrally. The strong central concentration of the line emission provides direct evidence that CS is a parent molecule that forms close to the stellar photosphere, in accord with previous images of the lower excitation CS J=2--1 line and inferences from unresolved observations of vibrationally excited transitions. The continuum emission is dominated by a compact, unresolved component, consistent with the photospheric emission, that accounts for about 20% of the broadband 450 micron flux. These are the first interferometer imaging observations made in the semi-transparent 450 micron atmospheric window.



rate research

Read More

123 - Nimesh A. Patel 2008
A spectral-line survey of IRC+10216 in the 345 GHz band has been undertaken with the Submillimeter Array. Although not yet completed, it has already yielded a fairly large sample of narrow molecular emission lines with line-widths indicating expansion velocities of ~4 km/s, less than 3 times the well-known value of the terminal expansion velocity (14.5 km/s) of the outer envelope. Five of these narrow lines have now been identified as rotational transitions in vibrationally excited states of previously detected molecules: the v=1, J=17--16 and J=19--18 lines of Si34S and 29SiS and the v=2, J=7--6 line of CS. Maps of these lines show that the emission is confined to a region within ~60 AU of the star, indicating that the narrow-line emission is probing the region of dust-formation where the stellar wind is still being accelerated.
We present new high angular resolution interferometer observations of the v=0 J=14-13 and 15-14 SiS lines towards IRC+10216, carried out with CARMA and ALMA. The maps, with angular resolutions of ~0.25and 0.55, reveal (1) an extended, roughly uniform, and weak emission with a size of ~0.5, (2) a component elongated approximately along the East-West direction peaking at ~0.13 and 0.17 at both sides of the central star, and (3) two blue- and red-shifted compact components peaking around 0.07 to the NW of the star. We have modeled the emission with a 3D radiation transfer code finding that the observations cannot be explained only by thermal emission. Several maser clumps and one arc-shaped maser feature arranged from 5 to 20R* from the central star, in addition to a thin shell-like maser structure at ~13R* are required to explain the observations. This maser emitting set of structures accounts for 75% of the total emission while the other 25% is produced by thermally excited molecules. About 60% of the maser emission comes from the extended emission and the rest from the set of clumps and the arc. The analysis of a time monitoring of these and other SiS and 29SiS lines carried out with the IRAM 30m telescope from 2015 to present suggests that the intensity of some spectral components of the maser emission strongly depends on the stellar pulsation while other components show a mild variability. This monitoring evidences a significant phase lag of ~0.2 between the maser and NIR light-curves.
During the transition from the Asymptotic Giant Branch (AGB) to Planetary Nebulae (PN), the circumstellar geometry and morphology change dramatically. Another characteristic of this transition is the high mass loss rate, that can be partially explained by radiation pressure and a combination of various factors like the stellar pulsation, the dust grain condensation and opacity in the upper atmosphere. The magnetic field can also be one of the main ingredients that shapes the stellar upper atmosphere and envelope. Our main goal is to investigate for the first time the spatial distribution of the magnetic field in the envelope of IRC+10216. More generally we intend to determine the magnetic field strength in the circumstellar envelope (CSE) of C-rich evolved stars, compare this field with previous studies for O-rich stars, and constrain the variation of the magnetic field with r the distance to the stars center. We use spectropolarimetric observations of the Stokes V parameter, collected with Xpol on the IRAM-30m radiotelescope, observing the Zeeman effect in seven hyperfine components of the CN J = 1-0 line. We use Crutchers method to estimate the magnetic field. For C-rich evolved stars, we derive a magnetic field strength (B) between 1.6 and 14.2 mG while B is estimated to be 6 mG for the proto-PN (PPN) AFGL618, and an upper value of 8 mG is found for the PN NGC7027. These results are consistent with a decrease of B as 1/r in the environment of AGB objects, i.e., with the presence of a toroidal field. But this is not the case for PPN and PN stars. Our map of IRC+10216 suggests that the magnetic field is not homogeneously strong throughout or aligned with the envelope and that the morphology of the CN emission might have changed with time.
High angular resolution images of IRC+10216 are presented in several near infrared wavelengths spanning more than 8 years. These maps have been reconstructed from interferometric observations obtained at both Keck and the VLT, and also from stellar occultations by the rings of Saturn observed with the Cassini spacecraft. The dynamic inner regions of the circumstellar environment are monitored over eight epochs ranging between January 2000 and July 2008. The system is shown to experience substantial evolution within this period including the fading of many previously reported persistent features, some of which had been identified as the stellar photosphere. These changes are discussed in context of existing models for the nature of the underlying star and the circumstellar environment. With access to these new images, we are able to report that none of the previously identified bright spots in fact contain the star, which is buried in its own dust and not directly visible in the near infrared.
105 - K. M. Menten 2006
We describe Very Large Array observations of the extreme carbon star IRC+10216 at 8.4, 14.9, and 22.5 GHz made over a two year period. We find possible variability correlated with the infrared phase and a cm- to sub-millimeter wavelength spectral index very close to 2. The variability, observed flux densities, and upper limit on the size are consistent with the emission arising from the stellar photosphere or a slightly larger radio photosphere.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا