Do you want to publish a course? Click here

The maser emitting structure and time variability of the SiS lines J=14-13 and 15-14 in IRC+10216

79   0   0.0 ( 0 )
 Added by Jose Pablo Fonfria
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present new high angular resolution interferometer observations of the v=0 J=14-13 and 15-14 SiS lines towards IRC+10216, carried out with CARMA and ALMA. The maps, with angular resolutions of ~0.25and 0.55, reveal (1) an extended, roughly uniform, and weak emission with a size of ~0.5, (2) a component elongated approximately along the East-West direction peaking at ~0.13 and 0.17 at both sides of the central star, and (3) two blue- and red-shifted compact components peaking around 0.07 to the NW of the star. We have modeled the emission with a 3D radiation transfer code finding that the observations cannot be explained only by thermal emission. Several maser clumps and one arc-shaped maser feature arranged from 5 to 20R* from the central star, in addition to a thin shell-like maser structure at ~13R* are required to explain the observations. This maser emitting set of structures accounts for 75% of the total emission while the other 25% is produced by thermally excited molecules. About 60% of the maser emission comes from the extended emission and the rest from the set of clumps and the arc. The analysis of a time monitoring of these and other SiS and 29SiS lines carried out with the IRAM 30m telescope from 2015 to present suggests that the intensity of some spectral components of the maser emission strongly depends on the stellar pulsation while other components show a mild variability. This monitoring evidences a significant phase lag of ~0.2 between the maser and NIR light-curves.



rate research

Read More

96 - K. H. Young 2004
We present imaging observations of the evolved star IRC+10216 in the CS J=14--13 line at 685.4 GHz and associated submillimeter continuum at about 2 resolution made with the partially constructed Submillimeter Array. The CS J=14--13 line emission from the stellar envelope is well resolved both spatially and spectrally. The strong central concentration of the line emission provides direct evidence that CS is a parent molecule that forms close to the stellar photosphere, in accord with previous images of the lower excitation CS J=2--1 line and inferences from unresolved observations of vibrationally excited transitions. The continuum emission is dominated by a compact, unresolved component, consistent with the photospheric emission, that accounts for about 20% of the broadband 450 micron flux. These are the first interferometer imaging observations made in the semi-transparent 450 micron atmospheric window.
A single dish monitoring of millimeter maser lines SiS J=14-13 and HCN nu_2 = 1^f J=3-2 and several other rotational lines is reported for the archetypal carbon star IRC+10216. Relative line strength variations of 5%~30% are found for eight molecular line features with respect to selected reference lines. Definite line-shape variation is found in limited velocity intervals of the SiS and HCN line profiles. The asymmetrical line profiles of the two lines are mainly due to the varying components. Their dominant varying components of the line profiles have similar periods and phases as the IR light variation, although both quantities show some degree of velocity dependence; there is also variability asymmetry between the blue and red line wings of both lines. Combining the velocities and amplitudes with a wind velocity model, we suggest that the line profile variations are due to SiS and HCN masing lines emanating from the wind acceleration zone. The possible link of the variabilities to thermal, dynamical and/or chemical processes within or under this region is also discussed.
100 - Y. Gong , C. Henkel , J. Ott 2017
We present new Effelsberg-100 m, ATCA, and VLA observations of rotational SiS transitions in the circumstellar envelope (CSE) of IRC +10216. Thanks to the high angular resolution achieved by the ATCA observations, we unambiguously confirm that the molecules J=1-0 transition exhibits maser action in this CSE, as first suggested more than thirty years ago. The maser emissions radial velocity peaking at a local standard of rest velocity of -39.862$pm$0.065 km/s indicates that it arises from an almost fully accelerated shell. Monitoring observations show time variability of the SiS (1-0) maser. The two lowest-$J$ SiS quasi-thermal emission lines trace a much more extended emitting region than previous high-J SiS observations. Their distributions show that the SiS quasi-thermal emission consists of two components: one is very compact (radius<1.5, corresponding to <3$times 10^{15}$ cm), and the other extends out to a radius >11. An incomplete shell-like structure is found in the north-east, which is indicative of existing SiS shells. Clumpy structures are also revealed in this CSE. The gain of the SiS (1-0) maser (optical depths of about -5 at the blue-shifted side and, assuming inversion throughout the entire lines velocity range, about -2 at the red-shifted side) suggests that it is unsaturated. The SiS (1-0) maser can be explained in terms of ro-vibrational excitation caused by infrared pumping, and we propose that infrared continuum emission is the main pumping source.
New high-resolution far-infrared (FIR) observations of both ortho- and para-NH3 transitions toward IRC+10216 were obtained with Herschel, with the goal of determining the ammonia abundance and constraining the distribution of NH3 in the envelope of IRC+10216. We used the Heterodyne Instrument for the Far Infrared (HIFI) on board Herschel to observe all rotational transitions up to the J=3 level (three ortho- and six para-NH3 lines). We conducted non-LTE multilevel radiative transfer modelling, including the effects of near-infrared (NIR) radiative pumping through vibrational transitions. We found that NIR pumping is of key importance for understanding the excitation of rotational levels of NH3. The derived NH3 abundances relative to molecular hydrogen were (2.8+-0.5)x10^{-8} for ortho-NH3 and (3.2^{+0.7}_{-0.6})x10^{-8} for para-NH3, consistent with an ortho/para ratio of 1. These values are in a rough agreement with abundances derived from the inversion transitions, as well as with the total abundance of NH3 inferred from the MIR absorption lines. To explain the observed rotational transitions, ammonia must be formed near to the central star at a radius close to the end of the wind acceleration region, but no larger than about 20 stellar radii (1 sigma confidence level).
We report on the discovery of strong intensity variations in the high rotational lines of abundant molecular species towards the archetypical circumstellar envelope of IRC+10216. The observations have been carried out with the HIFI instrument on board textit{Herschel}thanks{textit{Herschel} is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA} and with the IRAMthanks{This work was based on observations carried out with the IRAM 30-meter telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain)} 30-m telescope. They cover several observing periods spreading over 3 years. The line intensity variations for molecules produced in the external layers of the envelope most probably result from time variations in the infrared pumping rates. We analyze the main implications this discovery has on the interpretation of molecular line emission in the envelopes of Mira-type stars. Radiative transfer calculations have to take into account both the time variability of infrared pumping and the possible variation of the dust and gas temperatures with stellar phase in order to reproduce the observation of molecular lines at different epochs. The effect of gas temperature variations with stellar phase could be particularly important for lines produced in the innermost regions of the envelope. Each layer of the circumstellar envelope sees the stellar light radiation with a different lag time (phase). Our results show that this effect must be included in the models. The sub-mm and FIR lines of AGB stars cannot anymore be considered as safe intensity calibrators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا