No Arabic abstract
A spectral-line survey of IRC+10216 in the 345 GHz band has been undertaken with the Submillimeter Array. Although not yet completed, it has already yielded a fairly large sample of narrow molecular emission lines with line-widths indicating expansion velocities of ~4 km/s, less than 3 times the well-known value of the terminal expansion velocity (14.5 km/s) of the outer envelope. Five of these narrow lines have now been identified as rotational transitions in vibrationally excited states of previously detected molecules: the v=1, J=17--16 and J=19--18 lines of Si34S and 29SiS and the v=2, J=7--6 line of CS. Maps of these lines show that the emission is confined to a region within ~60 AU of the star, indicating that the narrow-line emission is probing the region of dust-formation where the stellar wind is still being accelerated.
We present imaging observations of the evolved star IRC+10216 in the CS J=14--13 line at 685.4 GHz and associated submillimeter continuum at about 2 resolution made with the partially constructed Submillimeter Array. The CS J=14--13 line emission from the stellar envelope is well resolved both spatially and spectrally. The strong central concentration of the line emission provides direct evidence that CS is a parent molecule that forms close to the stellar photosphere, in accord with previous images of the lower excitation CS J=2--1 line and inferences from unresolved observations of vibrationally excited transitions. The continuum emission is dominated by a compact, unresolved component, consistent with the photospheric emission, that accounts for about 20% of the broadband 450 micron flux. These are the first interferometer imaging observations made in the semi-transparent 450 micron atmospheric window.
Aims.Analysis of the innermost regions of the carbon-rich star IRC+10216 and of the outer layers of its circumstellar envelope have been performed in order to constrain its mass-loss history. Methods: .We analyzed the high dynamic range of near-infrared adaptive optics and the deep V-band images of the circumstellar envelope of IRC+10216 using high angular resolution, collected with the VLT/NACO and FORS1 instruments. Results: .From the near-infrared observations, we present maps of the sub-arcsecond structures, or clumps, in the innermost regions. The morphology of these clumps is found to strongly vary from J- to L-band. Their relative motion appears to be more complex than proposed in earlier works: they can be weakly accelerated, have a constant velocity, or even be motionless with respect to one another. From V-band imaging, we present a high spatial resolution map of the shell distribution in the outer layers of IRC+10216. Shells are resolved well up to a distance of about 90 to the core of the nebula and most of them appear to be composed of thinner elongated shells. Finally, by combining the NACO and FORS1 images, a global view is present to show both the extended layers and the bipolar core of the nebula together with the real size of the inner clumps. Conclusions: .This study confirms the rather complex nature of the IRC+10216 circumstellar environment. In particular, the coexistence at different spatial scales of structures with very different morphologies (clumps, bipolarity, and almost spherical external layers) is very puzzling. This confirms that the formation of AGB winds is far more complex than usually assumed in current models.
A single dish monitoring of millimeter maser lines SiS J=14-13 and HCN nu_2 = 1^f J=3-2 and several other rotational lines is reported for the archetypal carbon star IRC+10216. Relative line strength variations of 5%~30% are found for eight molecular line features with respect to selected reference lines. Definite line-shape variation is found in limited velocity intervals of the SiS and HCN line profiles. The asymmetrical line profiles of the two lines are mainly due to the varying components. Their dominant varying components of the line profiles have similar periods and phases as the IR light variation, although both quantities show some degree of velocity dependence; there is also variability asymmetry between the blue and red line wings of both lines. Combining the velocities and amplitudes with a wind velocity model, we suggest that the line profile variations are due to SiS and HCN masing lines emanating from the wind acceleration zone. The possible link of the variabilities to thermal, dynamical and/or chemical processes within or under this region is also discussed.
We present high spectral resolution mid-IR observations of SiS towards the C-rich AGB star IRC+10216 carried out with the Texas Echelon-cross-Echelle Spectrograph mounted on the NASA Infrared Telescope Facility. We have identified 204 ro-vibrational lines of 28Si32S, 26 of 29Si32S, 20 of 28Si34S, and 15 of 30Si32S in the frequency range 720-790 cm-1. These lines belong to bands v=1-0, 2-1, 3-2, 4-3, and 5-4, and involve rotational levels with Jlow<90. About 30 per cent of these lines are unblended or weakly blended and can be partially or entirely fitted with a code developed to model the mid-IR emission of a spherically symmetric circumstellar envelope composed of expanding gas and dust. The observed lines trace the envelope at distances to the star <35R* (~0.7 arcsec). The fits are compatible with an expansion velocity of 1+2.5(r/R*-1) km/s between 1 and 5R*, 11 km/s between 5 and 20R*, and 14.5 km/s outwards. The derived abundance profile of 28Si32S with respect to H2 is 4.9e-6 between the stellar photosphere and 5R*, decreasing linearly to 1.6e-6 at 20R* and to 1.3e-6 at 50R*. 28Si32S seems to be rotationally under LTE in the region of the envelope probed with our observations and vibrationally out of LTE in most of it. There is a red-shifted emission excess in the 28Si32S lines of band v=1-0 that cannot be found in the lines of bands v=2-1, 3-2, 4-3, and 5-4. This excess could be explained by an enhancement of the vibrational temperature around 20R* behind the star. The derived isotopic ratios 28Si/29Si, and 32S/34S are 17 and 14, compatible with previous estimates.
H13CN J=8-7 sub-millimetre line emission produced in the circumstellar envelope around the extreme carbon star IRC+10216 has been imaged at sub-arcsecond angular resolution using the SMA. Supplemented by a detailed excitation analysis the average fractional abundance of H13CN in the inner wind (< 5E15 cm) is estimated to be about 4E-7, translating into a total HCN fractional abundance of 2E-5 using the isotopic ratio 12C/13C=50. Multi-transitional single-dish observations further requires the H13CN fractional abundance to remain more or less constant in the envelope out to a radius of about 4E16 cm, where the HCN molecules are effectively destroyed, most probably, by photodissociation. The large amount of HCN present in the inner wind provides effective line cooling that can dominate over that generated from CO line emission. It is also shown that great care needs to be taken in the radiative transfer modelling where non-local, and non-LTE, effects are important and where the radiation field from thermal dust grains plays a major role in exciting the HCN molecules. The amount of HCN present in the circumstellar envelope around IRC+10216 is consistent with predicted photospheric values based on equilibrium chemical models and indicates that any non-equilibrium chemistry occurring in the extended pulsating atmosphere has no drastic net effect on the fractional abundance of HCN molecules that enters the outer envelope. It further suggests that few HCN molecules are incorporated into dust grains.