Do you want to publish a course? Click here

Radio continuum monitoring of the extreme carbon star IRC+10216

106   0   0.0 ( 0 )
 Added by Karl M. Menten
 Publication date 2006
  fields Physics
and research's language is English
 Authors K. M. Menten




Ask ChatGPT about the research

We describe Very Large Array observations of the extreme carbon star IRC+10216 at 8.4, 14.9, and 22.5 GHz made over a two year period. We find possible variability correlated with the infrared phase and a cm- to sub-millimeter wavelength spectral index very close to 2. The variability, observed flux densities, and upper limit on the size are consistent with the emission arising from the stellar photosphere or a slightly larger radio photosphere.



rate research

Read More

High angular resolution images of IRC+10216 are presented in several near infrared wavelengths spanning more than 8 years. These maps have been reconstructed from interferometric observations obtained at both Keck and the VLT, and also from stellar occultations by the rings of Saturn observed with the Cassini spacecraft. The dynamic inner regions of the circumstellar environment are monitored over eight epochs ranging between January 2000 and July 2008. The system is shown to experience substantial evolution within this period including the fading of many previously reported persistent features, some of which had been identified as the stellar photosphere. These changes are discussed in context of existing models for the nature of the underlying star and the circumstellar environment. With access to these new images, we are able to report that none of the previously identified bright spots in fact contain the star, which is buried in its own dust and not directly visible in the near infrared.
132 - L. D. Matthews 2015
We have used the Robert C. Byrd Green Bank Telescope to perform the most sensitive search to date for neutral atomic hydrogen (HI) in the circumstellar envelope (CSE) of the carbon star IRC+10216. Our observations have uncovered a low surface brightness HI shell of diameter ~1300 (~0.8 pc), centered on IRC+10216. The HI shell has an angular extent comparable to the far ultraviolet-emitting astrosphere of IRC+10216 previously detected with the GALEX satellite, and its kinematics are consistent with circumstellar matter that has been decelerated by the local interstellar medium. The shell appears to completely surround the star, but the highest HI column densities are measured along the leading edge of the shell, near the location of a previously identified bow shock. We estimate a total mass of atomic hydrogen associated with IRC+10216 CSE of M_HI~3x10e-3 M_sun. This is only a small fraction of the expected total mass of the CSE (<1%) and is consistent with the bulk of the stellar wind originating in molecular rather than atomic form, as expected for a cool star with an effective temperature T_eff<~2200 K. HI mapping of a 2 deg x 2 deg region surrounding IRC+10216 has also allowed us to characterize the line-of-sight interstellar emission in the region and has uncovered a link between diffuse FUV emission southwest of IRC+10216 and the Local Leo Cold Cloud.
We present the detection of C4H2 for first time in the envelope of the C-rich AGB star IRC+10216 based on high spectral resolution mid-IR observations carried out with the Texas Echelon-cross-Echelle Spectrograph (TEXES) mounted on the Infrared Telescope Facility (IRTF). The obtained spectrum contains 24 narrow absorption features above the detection limit identified as lines of the ro-vibrational C4H2 band nu6+nu8(sigma_u^+). The analysis of these lines through a ro-vibrational diagram indicates that the column density of C4H2 is 2.4(1.5)E+16 cm^(-2). Diacetylene is distributed in two excitation populations accounting for 20 and 80% of the total column density and with rotational temperatures of 47(7) and 420(120) K, respectively. This two-folded rotational temperature suggests that the absorbing gas is located beyond ~0.4~20R* from the star with a noticeable cold contribution outwards from ~10~500R*. This outer shell matches up with the place where cyanoacetylenes and carbon chains are known to form due to the action of the Galactic dissociating radiation field on the neutral gas coming from the inner layers of the envelope.
Linear carbon chains are common in various types of astronomical molecular sources. Possible formation mechanisms involve both bottom-up and top-down routes. We have carried out a combined observational and modeling study of the formation of carbon chains in the C-star envelope IRC+10216, where the polymerization of acetylene and hydrogen cyanide induced by ultraviolet photons can drive the formation of linear carbon chains of increasing length. We have used ALMA to map the emission of 3 mm rotational lines of the hydrocarbon radicals C2H, C4H, and C6H, and the CN-containing species CN, C3N, HC3N, and HC5N with an angular resolution of 1. The spatial distribution of all these species is a hollow, 5-10 wide, spherical shell located at a radius of 10-20 from the star, with no appreciable emission close to the star. Our observations resolve the broad shell of carbon chains into thinner sub-shells which are 1-2 wide and not fully concentric, indicating that the mass loss process has been discontinuous and not fully isotropic. The radial distributions of the species mapped reveal subtle differences: while the hydrocarbon radicals have very similar radial distributions, the CN-containing species show more diverse distributions, with HC3N appearing earlier in the expansion and the radical CN extending later than the rest of the species. The observed morphology can be rationalized by a chemical model in which the growth of polyynes is mainly produced by rapid gas-phase chemical reactions of C2H and C4H radicals with unsaturated hydrocarbons, while cyanopolyynes are mainly formed from polyynes in gas-phase reactions with CN and C3N radicals.
Temporal variation of millimeter lines is a new direction of research for evolved stars. It has the potential to probe the dynamical wind launching processes from time dimension. We report here the first ALMA (Atacama Large Millimeter Array) results that cover 817 days of an on-going monitoring of 1.1 mm lines in the archetypal carbon star IRC +10216. The monitoring is done with the compact 7-m array (ACA) and in infrared with a 1.25 m telescope in Crimea. A high sensitivity of the cumulative spectra covering a total of ~7.2 GHz between 250 - 270 GHz range has allowed us to detect about 148 known transitions of 20 molecules, together with more of their isotopologues, and 81 unidentified lines. An overview of the variabilities of all detected line features are presented in spectral plots. Although a handful of lines are found to be very possibly stable in time, most other lines are varying either roughly in phase or in anti-correlation with the near-infrared light. Several lines have their variations in the ALMA data coincident with existing single dish monitoring results, while several others do not, which requires an yet unknown mechanism in the circumstellar envelop to explain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا