Do you want to publish a course? Click here

Energy exchange inside SN ejecta and light curves of SNe Ia

100   0   0.0 ( 0 )
 Added by Blinnikov S.
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

A treatment of line opacity in expanding medium is most crucial for the light curve (LC) modeling of Type Ia supernovae (SNe Ia). Spectral lines are the main source of opacity inside SN Ia ejecta from ultraviolet through infrared range. Here we focus on the mean opacity for the energy equation. We solve the Boltzmann equation for photons in the comoving frame for a spherically-symmetrical flow. For rectangle line profiles we find an analytical expression for frequency averaged intensity and absorptive opacity. The results differ from previously known heuristic solutions. The LCs in the I-band are in better agreement with observations.



rate research

Read More

Photometric and spectroscopic observations of type Ia supernova (SN) 2017fgc which cover the period from $-$12 to +137 days since the $B$-band maximum are presented. SN 2017fgc is a photometrically normal SN Ia with the luminosity decline rate, $ Delta m_{15} (B)_{true} $= 1.10 $ pm $ 0.10 mag. Spectroscopically, it belongs to the High Velocity (HV) SNe Ia group, with the Si II $lambda$6355 velocity near the $B$-band maximum estimated to be 15,200 $ pm $ 480 km $s^{-1}$. At the epochs around the near-infrared secondary peak, the $R$ and $I$ bands show an excess of $sim$0.2 mag level compared to the light curves of the normal velocity (NV) SNe Ia. Further inspection of the samples of HV and NV SNe Ia indicates that the excess is a generic feature among HV SNe Ia, different from NV SNe Ia. There is also a hint that the excess is seen in the V band, both in SN 2017fgc and other HV SNe Ia, which behaves like a less prominent shoulder in the light curve. The excess is not obvious in the B band (and unknown in the U band), and the color is consistent with the fiducial SN color. This might indicate the excess is attributed to the bolometric luminosity, not in the color. This excess is less likely caused by external effects, like an echo or change in reddening but could be due to an ionization effect, which reflects an intrinsic, either distinct or continuous, difference in the ejecta properties between HV and NV SNe Ia.
117 - B. Sadler , P. Hoeflich , E. Baron 2011
We present an analysis of high precision V light curves (LC) for 18 local Type Ia Supernovae, SNe Ia, as obtained with the same telescope and setup at the Las Campanas Observatory (LCO). This homogeneity provides an intrinsic accuracy a few hundreds of a magnitude both with respect to individual LCs and between different objects. Based on the Single Degenerate Scenario, SD, we identify patterns which have been predicted by model calculations as signatures of the progenitor and accretion rate which change the explosion energy and the amount of electron capture, respectively. Using these templates as principle components and the overdetermined system of SN pairs, we reconstruct the properties of progenitors and progenitor systems. All LCO SNe Ia follow the brightness decline relation but 2001ay. After subtraction of the two components, the remaining scatter is reduced to 0.01-0.03m. Type SNe Ia seem to originate from progenitors with Main Sequence masses of 3Mo with the exception of two subluminous SNe Ia with < 2Mo. The component analysis indicates a wide range of accretion rates in the progenitor systems closing the gap to accretion induced collapses (AIC). SN1991t-like objects show differences in $dm15$ but no tracers of our secondary parameters. This may point to a different origin such as DD-Scenario or the Pulsating Delayed Detonations. SN2001ay does not follow the decline relation. It can be understood in the framework of C-rich WDs, and this group may produce an anti-Phillips relation. We suggest that this may be a result of a common envelope phase and mixing during central He burning as in SN1987A.
We present SiFTO, a new empirical method for modeling type Ia supernovae (SNe Ia) light curves by manipulating a spectral template. We make use of high-redshift SN observations when training the model, allowing us to extend it bluer than rest frame U. This increases the utility of our high-redshift SN observations by allowing us to use more of the available data. We find that when the shape of the light curve is described using a stretch prescription, applying the same stretch at all wavelengths is not an adequate description. SiFTO therefore uses a generalization of stretch which applies different stretch factors as a function of both the wavelength of the observed filter and the stretch in the rest-frame B band. We compare SiFTO to other published light-curve models by applying them to the same set of SN photometry, and demonstrate that SiFTO and SALT2 perform better than the alternatives when judged by the scatter around the best fit luminosity distance relationship. We further demonstrate that when SiFTO and SALT2 are trained on the same data set the cosmological results agree.
The nearby, bright, almost completely unreddened Type Ia supernova 2011fe in M101 provides a unique opportunity to test both the precision and the accuracy of the extragalactic distances derived from SNe Ia light curve fitters. We apply the current, publ
We present optical observations of type Ia supernova (SN) 2019ein, starting at 2 days after the estimated explosion date. The spectra and the light curves show that SN 2019ein belongs to the High-Velocity (HV) and Bload Line groups with relatively rapid decline in the light curves (Delta m15(B) = 1.36 +- 0.02 mag) and the short rise time (15.37 +- 0.55 days). The Si II 6355 velocity, associated with a photospheric component but not with a detached high-velocity feature, reached ~ 20,000 km s-1 at 12 days before the B-band maximum. The line velocity however decreased very rapidly and smoothly toward the maximum light, where it was ~ 13,000 km s-1 as relatively low among HV SNe. This indicates that the speed of the spectral evolution of HV SNe Ia is correlated not only to the velocity at the maximum light, but also to the light curve decline rate like the case for Normal-Velocity (NV) SNe Ia. Spectral synthesis modeling shows that the outermost layer at > 17,000 km s-1 is well described by the O-Ne-C burning layer extending to at least 25,000 km s-1, and there is no unburnt carbon below 30,000 km s-1; these properties are largely consistent with the delayed detonation scenario, and are shared with the prototypical HV SN 2002bo despite the large difference in Delta m15(B). This structure is strikingly different from that derived for the well-studied NV SN 2011fe. We suggest that the relation between the mass of 56Ni (or Delta m15) and the extent of the O-Ne-C burning layer provides an important constraint on the explosion mechanism(s) of HV and NV SNe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا