Do you want to publish a course? Click here

Testing SNe Ia distance measurement methods with SN 2011fe

145   0   0.0 ( 0 )
 Added by Jozsef Vinko
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The nearby, bright, almost completely unreddened Type Ia supernova 2011fe in M101 provides a unique opportunity to test both the precision and the accuracy of the extragalactic distances derived from SNe Ia light curve fitters. We apply the current, publ



rate research

Read More

521 - Laura Chomiuk 2013
SN 2011fe is the nearest supernova of Type Ia (SN Ia) discovered in the modern multi-wavelength telescope era, and it also represents the earliest discovery of a SN Ia to date. As a normal SN Ia, SN 2011fe provides an excellent opportunity to decipher long-standing puzzles about the nature of SNe Ia. In this review, we summarize the extensive suite of panchromatic data on SN 2011fe, and gather interpretations of these data to answer four key questions: 1) What explodes in a SN Ia? 2) How does it explode? 3) What is the progenitor of SN 2011fe? and 4) How accurate are SNe Ia as standardizeable candles? Most aspects of SN 2011fe are consistent with the canonical picture of a massive CO white dwarf undergoing a deflagration-to-detonation transition. However, there is minimal evidence for a non-degenerate companion star, so SN 2011fe may have marked the merger of two white dwarfs.
We use the newly published 28 observational Hubble parameter data ($H(z)$) and current largest SNe Ia samples (Union2.1) to test whether the universe is transparent. Three cosmological-model-independent methods (nearby SNe Ia method, interpolation method and smoothing method) are proposed through comparing opacity-free distance modulus from Hubble parameter data and opacity-dependent distance modulus from SNe Ia . Two parameterizations, $tau(z)=2epsilon z$ and $tau(z)=(1+z)^{2epsilon}-1$ are adopted for the optical depth associated to the cosmic absorption. We find that the results are not sensitive to the methods and parameterizations. Our results support a transparent universe.
We present near infra-red light curves of supernova (SN) 2011fe in M101, including 34 epochs in H band starting fourteen days before maximum brightness in the B-band. The light curve data were obtained with the WIYN High-Resolution Infrared Camera (WHIRC). When the data are calibrated using templates of other Type Ia SNe, we derive an apparent H-band magnitude at the epoch of B-band maximum of 10.85 pm 0.04. This implies a distance modulus for M101 that ranges from 28.86 to 29.17 mag, depending on which absolute calibration for Type Ia SNe is used.
123 - P.A. Mazzali 2015
A series of optical and one near-infrared nebular spectra covering the first year of the Type Ia supernova SN 2011fe are presented and modelled. The density profile that proved best for the early optical/ultraviolet spectra, rho-11fe, was extended to lower velocities to include the regions that emit at nebular epochs. Model rho-11fe is intermediate between the fast deflagration model W7 and a low-energy delayed-detonation. Good fits to the nebular spectra are obtained if the innermost ejecta are dominated by neutron-rich, stable Fe-group species, which contribute to cooling but not to heating. The correct thermal balance can thus be reached for the strongest [FeII] and [FeIII] lines to be reproduced with the observed ratio. The 56Ni mass thus obtained is 0.47 +/- 0.05 Mo. The bulk of 56Ni has an outermost velocity of ~8500 km/s. The mass of stable iron is 0.23 +/- 0.03 Mo. Stable Ni has low abundance, ~10^{-2} Mo. This is sufficient to reproduce an observed emission line near 7400 A. A sub-Chandrasekhar explosion model with mass 1.02 Mo and no central stable Fe does not reproduce the observed line ratios. A mock model where neutron-rich Fe-group species are located above 56Ni following recent suggestions is also shown to yield spectra that are less compatible with the observations. The densities and abundances in the inner layers obtained from the nebular analysis, combined with those of the outer layers previously obtained, are used to compute a synthetic bolometric light curve, which compares favourably with the light curve of SN 2011fe.
On August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of dM/dt<10^-8 (w/100 km/s) [M_solar/yr] from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations we would have to wait for a long time (decade or longer) in order to more meaningfully probe the circumstellar matter of Ia supernovae.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا