Do you want to publish a course? Click here

Constraining the Properties of SNe~Ia Progenitors from Light Curves

117   0   0.0 ( 0 )
 Added by Peter Hoeflich
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of high precision V light curves (LC) for 18 local Type Ia Supernovae, SNe Ia, as obtained with the same telescope and setup at the Las Campanas Observatory (LCO). This homogeneity provides an intrinsic accuracy a few hundreds of a magnitude both with respect to individual LCs and between different objects. Based on the Single Degenerate Scenario, SD, we identify patterns which have been predicted by model calculations as signatures of the progenitor and accretion rate which change the explosion energy and the amount of electron capture, respectively. Using these templates as principle components and the overdetermined system of SN pairs, we reconstruct the properties of progenitors and progenitor systems. All LCO SNe Ia follow the brightness decline relation but 2001ay. After subtraction of the two components, the remaining scatter is reduced to 0.01-0.03m. Type SNe Ia seem to originate from progenitors with Main Sequence masses of 3Mo with the exception of two subluminous SNe Ia with < 2Mo. The component analysis indicates a wide range of accretion rates in the progenitor systems closing the gap to accretion induced collapses (AIC). SN1991t-like objects show differences in $dm15$ but no tracers of our secondary parameters. This may point to a different origin such as DD-Scenario or the Pulsating Delayed Detonations. SN2001ay does not follow the decline relation. It can be understood in the framework of C-rich WDs, and this group may produce an anti-Phillips relation. We suggest that this may be a result of a common envelope phase and mixing during central He burning as in SN1987A.



rate research

Read More

The Galactic population of close white dwarf binaries is expected to provide the largest number of gravitational wave sources for low frequency detectors such as the Laser Interferometer Space Antenna (LISA). Current data analysis techniques have demonstrated the capability of resolving on the order of $10^4$ white dwarf binaries from a 2 year observation. Resolved binaries are either at high frequencies or large amplitudes. Such systems are more likely to be high-mass binaries, a subset of which will be progenitors of SNe Ia in the double degenerate scenario. We report on results of a study of the properties of resolved binaries using a population synthesis model of the Galactic white dwarf binaries and a LISA data analysis algorithm using Mock LISA Data Challenge tools.
Photometric and spectroscopic observations of type Ia supernova (SN) 2017fgc which cover the period from $-$12 to +137 days since the $B$-band maximum are presented. SN 2017fgc is a photometrically normal SN Ia with the luminosity decline rate, $ Delta m_{15} (B)_{true} $= 1.10 $ pm $ 0.10 mag. Spectroscopically, it belongs to the High Velocity (HV) SNe Ia group, with the Si II $lambda$6355 velocity near the $B$-band maximum estimated to be 15,200 $ pm $ 480 km $s^{-1}$. At the epochs around the near-infrared secondary peak, the $R$ and $I$ bands show an excess of $sim$0.2 mag level compared to the light curves of the normal velocity (NV) SNe Ia. Further inspection of the samples of HV and NV SNe Ia indicates that the excess is a generic feature among HV SNe Ia, different from NV SNe Ia. There is also a hint that the excess is seen in the V band, both in SN 2017fgc and other HV SNe Ia, which behaves like a less prominent shoulder in the light curve. The excess is not obvious in the B band (and unknown in the U band), and the color is consistent with the fiducial SN color. This might indicate the excess is attributed to the bolometric luminosity, not in the color. This excess is less likely caused by external effects, like an echo or change in reddening but could be due to an ionization effect, which reflects an intrinsic, either distinct or continuous, difference in the ejecta properties between HV and NV SNe Ia.
The ESSENCE survey discovered 213 Type Ia supernovae at redshifts 0.1 < z < 0.81 between 2002 and 2008. We present their R and I-band photometry, measured from images obtained using the MOSAIC II camera at the CTIO 4 m Blanco telescope, along with rapid-response spectroscopy for each object. We use our spectroscopic follow-up observations to determine an accurate, quantitative classification and a precise redshift. Through an extensive calibration program we have improved the precision of the CTIO Blanco natural photometric system. We use several empirical metrics to measure our internal photometric consistency and our absolute calibration of the survey. We assess the effect of various potential sources of systematic bias on our measured fluxes, and we estimate that the dominant term in the systematic error budget from the photometric calibration on our absolute fluxes is ~1%.
We present SiFTO, a new empirical method for modeling type Ia supernovae (SNe Ia) light curves by manipulating a spectral template. We make use of high-redshift SN observations when training the model, allowing us to extend it bluer than rest frame U. This increases the utility of our high-redshift SN observations by allowing us to use more of the available data. We find that when the shape of the light curve is described using a stretch prescription, applying the same stretch at all wavelengths is not an adequate description. SiFTO therefore uses a generalization of stretch which applies different stretch factors as a function of both the wavelength of the observed filter and the stretch in the rest-frame B band. We compare SiFTO to other published light-curve models by applying them to the same set of SN photometry, and demonstrate that SiFTO and SALT2 perform better than the alternatives when judged by the scatter around the best fit luminosity distance relationship. We further demonstrate that when SiFTO and SALT2 are trained on the same data set the cosmological results agree.
99 - F. Mannucci 2005
We use recent observations of type Ia Supernova (SN Ia) rates to derive, on robust empirical grounds, the distribution of the delay time (DTD) between the formation of the progenitor star and its explosion as a SN. Our analysis finds: i) delay times as long as 3-4 Gyr, derived from observations of SNe Ia at high redshift, cannot reproduce the dependence of the SN Ia rate on the colors and on the radio-luminosity of the parent galaxies, as observed in the local Universe; ii) the comparison between observed SN rates and a grid of theoretical single-population DTDs shows that only a few of them are possibly consistent with observations. The most successful models are all predicting a peak of SN explosions soon after star formation and an extended tail in the DTD, and can reproduce the data but only at a modest statistical confidence level; iii) present data are best matched by a bimodal DTD, in which about 50% of type Ia SNe (dubbed prompt SN Ia) explode soon after their stellar birth, in a time of the order of 10^8 years, while the remaining 50% (tardy SN Ia) have a much wider distribution, well described by an exponential function with a decay time of about 3 Gyr. This fact, coupled with the well established bimodal distribution of the decay rate, suggests the existence of two classes of progenitors. We discuss the cosmological implications of this result and make simple predictions. [Abridged]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا