Do you want to publish a course? Click here

Origin of Galactic and Extragalactic Magnetic Fields

88   0   0.0 ( 0 )
 Added by Lawrence M. Widrow
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

A variety of observations suggest that magnetic fields are present in all galaxies and galaxy clusters. These fields are characterized by a modest strength (10^{-7}-10^{-5} G) and huge spatial scale (~Mpc). It is generally assumed that magnetic fields in spiral galaxies arise from the combined action of differential rotation and helical turbulence, a process known as the alpha-omega dynamo. However fundamental questions concerning the nature of the dynamo as well as the origin of the seed fields necessary to prime it remain unclear. Moreover, the standard alpha-omega dynamo does not explain the existence of magnetic fields in elliptical galaxies and clusters. The author summarizes what is known observationally about magnetic fields in galaxies, clusters, superclusters, and beyond. He then reviews the standard dynamo paradigm, the challenges that have been leveled against it, and several alternative scenarios. He concludes with a discussion of astrophysical and early Universe candidates for seed fields.



rate research

Read More

281 - Rainer Beck 2009
The strength of the total magnetic field in our Milky Way from radio Zeeman and synchrotron measurements is about 6 muG near the Sun and several mG in dense clouds, pulsar wind nebulae, and filaments near the Galactic Center. Diffuse polarized radio emission and Faraday rotation of the polarized emission from pulsars and background sources show many small-scale magnetic features, but the overall field structure in our Galaxy is still under debate. -- Radio synchrotron observations of nearby galaxies reveal dynamically important magnetic fields of 10-30 muG total strength in the spiral arms. Fields with random orientations are concentrated in spiral arms, while ordered fields (observed in radio polarization) are strongest in interarm regions and follow the orientation of the adjacent gas spiral arms. Faraday rotation of the diffuse polarized radio emission from the disks of spiral galaxies sometimes reveals large-scale patterns which are signatures of coherent fields generated by dynamos, but in most galaxies the field structure is more complicated. -- Strong magnetic fields are also observed in radio halos around edge-on galaxies, out to large distances from the plane. The synchrotron scaleheight of radio halos allows to measure the mean outflow velocity of the cosmic-ray electrons. The ordered halo fields mostly form an X-shaped pattern, but no large-scale pattern is seen in the Faraday rotation data. Diffuse polarized radio emission in the outer disks and halos is an excellent tracer of galaxy interactions and ram pressure by the intergalactic medium. -- Intracluster gas can also be significantly magnetized and highly polarized due to shocks or cluster mergers.
We briefly review sources of cosmic rays, their composition and spectra as well as their propagation in the galactic and extragalactic magnetic fields, both regular and fluctuating. A special attention is paid to the recent results of the X-ray and gamma-ray observations that shed light on the origin of the galactic cosmic rays and the challenging results of Pierre Auger Observatory on the ultra high energy cosmic rays. The perspectives of both high energy astrophysics and cosmic-ray astronomy to identify the sources of ultra high energy cosmic rays, the mechanisms of particle acceleration, to measure the intergalactic radiation fields and to reveal the structure of magnetic fields of very different scales are outlined.
The joint analysis of the Dispersion and Faraday Rotation Measure from distant, polarised Fast Radio Bursts may be used to put constraints on the origin and distribution of extragalactic magnetic fields on cosmological scales. While the combination of Dispersion and Faraday Rotation Measure can in principle give the average magnetic fields along the line-of-sight, in practice this method must be used with care because it strongly depends on the assumed magnetisation model on large cosmological scales. Our simulations show that the observation of Rotation Measures with $geq 1-10 ~rm rad/m^2$ in $sim 10^2$ Fast Radio Bursts will be able to discriminate between extreme scenarios for the origin of cosmic magnetic fields, independent of the exact distribution of sources with redshift. This represent a strong case for incoming (e.g. ALERT, CHIME) and future (e.g. with the Square Kilometer Array) radio polarisation surveys of the sky.
Observations of dwarf galaxies suggest the presence of large-scale magnetic fields. However the size and slow rotation of these galaxies appear insufficient to support a mean-field dynamo action to excite such fields. Here we suggest a new mechanism to explain large-scale magnetic fields in galaxies that are too small to support mean-field dynamo action. The key idea is that we do not identify large-scale and mean magnetic fields. In our scenario the the magnetic structures originate from a small-scale dynamo which produces small-scale magnetic field in the galactic disc and a galactic wind that transports this field into the galactic halo where the large turbulent diffusion increases the scale and order of the field. As a result, the magnetic field becomes large-scale; however its mean value remains vanishing in a strict sense. We verify the idea by numerical modelling of two distinct simplified configurations, a thin disc model using the no-$z$ approximation, and an axisymmetric model using cylindrical $r,z$ coordinates. Each of these allows reduction of the problem to two spatial dimensions. Taken together, the models support the proposition that the general trends will persist in a fully 3D model. We demonstrate that a pronounced large-scale pattern can develop in the galactic halo for a wide choice of the dynamo governing parameters. We believe that our mechanism can be relevant to explaining the presence of the fields observed in the halos of dwarf galaxies. We emphasize that detailed modelling of the proposed scenario needs 3D simulations, and adjustment to the specific dynamo governing parameters of dwarf galaxies.
An analytical model predicting the growth rates, the absolute growth times and the saturation values of the magnetic field strength within galactic haloes is presented. The analytical results are compared to cosmological MHD simulations of Milky-Way like galactic halo formation performed with the N-body / textsc{Spmhd} code textsc{Gadget}. The halo has a mass of $approx{}3cdot{}10^{12}$ $M_{odot}$ and a virial radius of $approx{}$270 kpc. The simulations in a $Lambda$CDM cosmology also include radiative cooling, star formation, supernova feedback and the description of non-ideal MHD. A primordial magnetic seed field ranging from $10^{-10}$ to $10^{-34}$ G in strength agglomerates together with the gas within filaments and protohaloes. There, it is amplified within a couple of hundred million years up to equipartition with the corresponding turbulent energy. The magnetic field strength increases by turbulent small-scale dynamo action. The turbulence is generated by the gravitational collapse and by supernova feedback. Subsequently, a series of halo mergers leads to shock waves and amplification processes magnetizing the surrounding gas within a few billion years. At first, the magnetic energy grows on small scales and then self-organizes to larger scales. Magnetic field strengths of $approx{}10^{-6}$ G are reached in the center of the halo and drop to $approx{}10^{-9}$ G in the IGM. Analyzing the saturation levels and growth rates, the model is able to describe the process of magnetic amplification notably well and confirms the results of the simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا