No Arabic abstract
We briefly review sources of cosmic rays, their composition and spectra as well as their propagation in the galactic and extragalactic magnetic fields, both regular and fluctuating. A special attention is paid to the recent results of the X-ray and gamma-ray observations that shed light on the origin of the galactic cosmic rays and the challenging results of Pierre Auger Observatory on the ultra high energy cosmic rays. The perspectives of both high energy astrophysics and cosmic-ray astronomy to identify the sources of ultra high energy cosmic rays, the mechanisms of particle acceleration, to measure the intergalactic radiation fields and to reveal the structure of magnetic fields of very different scales are outlined.
From the analysis of the flux of high energy particles, $E>3cdot 10^{18}eV$, it is shown that the distribution of the power density of extragalactic rays over energy is of the power law, ${bar q}(E)propto E^{-2.7}$, with the same index of $2.7$ that has the distribution of Galactic cosmic rays before so called knee, $E<3cdot 10^{15}eV$. However, the average power of extragalactic sources, which is of ${cal E}simeq 10^{43}erg ,s^{-1}$, at least two orders exceeds the power emitted by the Galaxy in cosmic rays, assuming that the density of galaxies is estimated as $N_gsimeq 1 Mpc^{-3}$. Considering that such power can be provided by relativistic jets from active galactic nuclei with the power ${cal E}simeq 10^{45} - 10^{46} erg , s^{-1}$, we estimate the density of extragalactic sources of cosmic rays as $N_gsimeq 10^{-2}-10^{-3}, Mpc^{-3}$. Assuming the same nature of Galactic and extragalactic rays, we conclude that the Galactic rays were produced by a relativistic jet emitted from the Galactic center during the period of its activity in the past. The remnants of a bipolar jet are now observed in the form of bubbles of relativistic gas above and below the Galactic plane. The break, observed in the spectrum of Galactic rays (knee), is explained by fast escape of energetic particle, $E>3cdot 10^{15}eV$, from the Galaxy because of the dependence of the coefficient of diffusion of cosmic rays on energy, $Dpropto E^{0.7}$. The obtained index of the density distribution of particles over energy, $N(E)propto E^{-2.7-0.7/2}=E^{-3.05}$, for $E>3cdot 10^{15}eV$ agrees well with the observed one, $N(E)propto E^{-3.1}$. Estimated time of termination of the jet in the Galaxy is $4.2cdot 10^{4}$ years ago.
The study of the transition between galactic and extragalactic cosmic rays can shed more light on the end of the Galactic cosmic rays spectrum and the beginning of the extragalactic one. Three models of transition are discussed: ankle, dip and mixed composition models. All these models describe the transition as an intersection of a steep galactic component with a flat extragalactic one. Severe bounds on these models are provided by the Standard Model of Galactic Cosmic Rays according to which the maximum acceleration energy for Iron nuclei is of the order of $E_{rm Fe}^{rm max} approx 1times 10^{17}$ eV. In the ankle model the transition is assumed at the ankle, a flat feature in the all particle spectrum which observationally starts at energy $E_a sim (3 - 4)times 10^{18}$ eV. This model needs a new high energy galactic component with maximum energy about two orders of magnitude above that of the Standard Model. The origin of such component is discussed. As observations are concerned there are two signatures of the transition: change of energy spectra and mass composition. In all models a heavy galactic component is changed at the transition to a lighter or proton component.
The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic ray propagation have largely overlooked intermittency, instead relying on Gaussian random magnetic fields. Using test particle simulations, we investigate cosmic ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic ray diffusion over a wide range of particle energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.
The signatures of UHE proton propagation through CMB are pair-production dip and GZK cutoff. The visible manifestations of these spectral features are ankle, beginning of GZK cutoff in the differential spectrum and E_{1/2} in integral spectrum. Observed in all experiments, the ankle is usually interpreted as transition from galactic to extragalactic cosmic rays. Using the mass composition measured by HiRes, Telescope Array (TA) and Auger detectors at energy (1-3) EeV, calculated anisotropy of galactic cosmic rays at these energies, and the elongation curves we strongly argue against the interpretation of the ankle given above. The transition must occur at lower energy, most probably at the second knee as the dip model predicts. The other prediction of this model, the shape of the dip, is well confirmed by HiRes, TA, AGASA and Yakutsk detectors, and, after recalibration of energies, by Auger detector. Predicted beginning of GZK cutoff and E_{1/2} agree well with HiRes and TA data. However, directly measured mass composition remains a puzzle. While HiRes and TA detectors observe the proton-dominated mass composition, as required by the dip model, the data of Auger detector strongly evidence for nuclei mass composition becoming steadily heavier at energy higher than 4 EeV and reaching Iron at energy about 35 EeV. The Auger-based scenario is consistent with another interpretation of the ankle at energy E_a=4 EeV as transition from extragalactic protons to extragalactic nuclei. The heavy- nuclei dominance at higher energies may be provided by low-energy of acceleration for protons E_{max} sim 4 EeV and rigidity-dependent E_{max}^A =Z E_{max}$ for nuclei. The highest energy suppression may be explained as nuclei-destroying cutoff.
The strength of the total magnetic field in our Milky Way from radio Zeeman and synchrotron measurements is about 6 muG near the Sun and several mG in dense clouds, pulsar wind nebulae, and filaments near the Galactic Center. Diffuse polarized radio emission and Faraday rotation of the polarized emission from pulsars and background sources show many small-scale magnetic features, but the overall field structure in our Galaxy is still under debate. -- Radio synchrotron observations of nearby galaxies reveal dynamically important magnetic fields of 10-30 muG total strength in the spiral arms. Fields with random orientations are concentrated in spiral arms, while ordered fields (observed in radio polarization) are strongest in interarm regions and follow the orientation of the adjacent gas spiral arms. Faraday rotation of the diffuse polarized radio emission from the disks of spiral galaxies sometimes reveals large-scale patterns which are signatures of coherent fields generated by dynamos, but in most galaxies the field structure is more complicated. -- Strong magnetic fields are also observed in radio halos around edge-on galaxies, out to large distances from the plane. The synchrotron scaleheight of radio halos allows to measure the mean outflow velocity of the cosmic-ray electrons. The ordered halo fields mostly form an X-shaped pattern, but no large-scale pattern is seen in the Faraday rotation data. Diffuse polarized radio emission in the outer disks and halos is an excellent tracer of galaxy interactions and ram pressure by the intergalactic medium. -- Intracluster gas can also be significantly magnetized and highly polarized due to shocks or cluster mergers.