No Arabic abstract
An analytical model predicting the growth rates, the absolute growth times and the saturation values of the magnetic field strength within galactic haloes is presented. The analytical results are compared to cosmological MHD simulations of Milky-Way like galactic halo formation performed with the N-body / textsc{Spmhd} code textsc{Gadget}. The halo has a mass of $approx{}3cdot{}10^{12}$ $M_{odot}$ and a virial radius of $approx{}$270 kpc. The simulations in a $Lambda$CDM cosmology also include radiative cooling, star formation, supernova feedback and the description of non-ideal MHD. A primordial magnetic seed field ranging from $10^{-10}$ to $10^{-34}$ G in strength agglomerates together with the gas within filaments and protohaloes. There, it is amplified within a couple of hundred million years up to equipartition with the corresponding turbulent energy. The magnetic field strength increases by turbulent small-scale dynamo action. The turbulence is generated by the gravitational collapse and by supernova feedback. Subsequently, a series of halo mergers leads to shock waves and amplification processes magnetizing the surrounding gas within a few billion years. At first, the magnetic energy grows on small scales and then self-organizes to larger scales. Magnetic field strengths of $approx{}10^{-6}$ G are reached in the center of the halo and drop to $approx{}10^{-9}$ G in the IGM. Analyzing the saturation levels and growth rates, the model is able to describe the process of magnetic amplification notably well and confirms the results of the simulations.
Magnetic fields on a range of scales play a large role in the ecosystems of galaxies, both in the galactic disk and in the extended layers of gas away from the plane. Observing magnetic field strength, structure and orientation is complex, and necessarily indirect. Observational data of magnetic fields in the halo of the Milky Way are scarce, and non-conclusive about the large-scale structure of the field. In external galaxies, various large-scale configurations of magnetic fields are measured, but many uncertainties about exact configurations and their origin remain. There is a strong interaction between magnetic fields and other components in the interstellar medium such as ionized and neutral gas and cosmic rays. The energy densities of these components are comparable on large scales, indicating that magnetic fields are not passive tracers but that magnetic field feedback on the other interstellar medium components needs to be taken into account.
We obtain predictions for the properties of cold dark matter annihilation radiation using high resolution hydrodynamic zoom-in cosmological simulations of Milky Way-like galaxies (APOSTLE project) carried out as part of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) programme. Galactic halos in the simulation have significantly different properties from those assumed in the standard halo model often used in dark matter detection studies. The formation of the galaxy causes a contraction of the dark matter halo, whose density profile develops a steeper slope than the Navarro-Frenk-White (NFW) profile between $rapprox1.5$ kpc and $rapprox10$ kpc. At smaller radii, $rlesssim1.5$ kpc, the halos develop a flatter than NFW slope. This unexpected feature may be specific to our particular choice of subgrid physics model but nevertheless the dark matter density profiles agree within 30% as the mass resolution is increased by a factor 150. The inner regions of the halos are almost perfectly spherical (axis ratios $b/a > 0.97$ within $r=1$ kpc) and there is no offset larger than 45 pc between the centre of the stellar distribution and the centre of the dark halo. The morphology of the predicted dark matter annihilation radiation signal is in broad agreement with $gamma$-ray observations at large Galactic latitudes ($bgtrsim3^circ$). At smaller angles, the inferred signal in one of our four galaxies is similar to that which is observed but it is significantly weaker in the other three.
We calculate the probability that a Milky-Way-like halo in the standard cosmological model has the observed number of Magellanic Clouds (MCs). The statistics of the number of MCs in the LCDM model are in good agreement with observations of a large sample of SDSS galaxies. Under the sub-halo abundance matching assumption of a relationship with small scatter between galaxy r-band luminosities and halo internal velocities v_max, we make detailed comparisons to similar measurements using SDSS DR7 data by Liu et al. (2010). Models and observational data give very similar probabilities for having zero, one, and two MC-like satellites. In both cases, Milky Way-luminosity hosts have just a sim 10% chance of hosting two satellites similar to the Magellanic Clouds. In addition, we present a prediction for the probability for a host galaxy to have Nsats satellite galaxies as a function of the magnitudes of both the host and satellite. This probability and its scaling with host properties is significantly different from that of mass-selected objects because of scatter in the mass- luminosity relation and because of variations in the star formation efficiency with halo mass.
We investigate the chemical and kinematic properties of the diffuse stellar haloes of six simulated Milky Way-like galaxies from the Aquarius Project. Binding energy criteria are adopted to defined two dynamically distinct stellar populations: the diffuse inner and outer haloes, which comprise different stellar sub-populations with particular chemical and kinematic characteristics. Our simulated inner- and outer-halo stellar populations have received contributions from debris stars (formed in sub-galactic systems while they were outside the virial radius of the main progenitor galaxies) and endo-debris stars (those formed in gas-rich sub-galactic systems inside the dark matter haloes). The inner haloes possess an additional contribution from disc-heated stars in the range $sim 3 - 30 %$, with a mean of $sim 20% $. Disc-heated stars might exhibit signatures of kinematical support, in particular among the youngest ones. Endo-debris plus disc-heated stars define the so-called insitu stellar populations. In both the inner- and outer-halo stellar populations, we detect contributions from stars with moderate to low [$alpha$/Fe] ratios, mainly associated with the endo-debris or disc-heated sub-populations. The observed abundance gradients in the inner-halo regions are influenced by both the level of chemical enrichment and the relative contributions from each stellar sub-population. Steeper abundance gradients in the inner-halo regions are related to contributions from the disc-heated and endo-debris stars, which tend to be found at lower binding energies than debris stars. (Abridged).
This chapter presents a review of observational studies to determine the magnetic field in the Milky Way, both in the disk and in the halo, focused on recent developments and on magnetic fields in the diffuse interstellar medium. I discuss some terminology which is confusingly or inconsistently used and try to summarize current status of our knowledge on magnetic field configurations and strengths in the Milky Way. Although many open questions still exist, more and more conclusions can be drawn on the large-scale and small-scale components of the Galactic magnetic field. The chapter is concluded with a brief outlook to observational projects in the near future.