No Arabic abstract
Using new XMM and Chandra observations we present an analysis of the temperature structure of the hot gas within a radius of 100 kpc of the bright nearby galaxy group NGC 5044. A spectral deprojection analysis of data extracted from circular annuli reveals that a two-temperature model (2T) of the hot gas is favored over single-phase or cooling flow (M_dot = 4.5 +/- 0.2 M_{sun}/yr) models within the central ~30 kpc. Alternatively, the data can be fit equally well if the temperature within each spherical shell varies continuously from ~T_h to T_c ~ T_h/2, but no lower. The high spatial resolution of the Chandra data allows us to determine that the temperature excursion T_h --> T_c required in each shell exceeds the temperature range between the boundaries of the same shell in the best-fitting single-phase model. This is strong evidence for a multi-phase gas having a limited temperature range. The cooler component of the 2T model has a temperature (T_c ~ 0.7 keV) similar to the kinetic temperature of the stars. The hot phase has a temperature (T_h ~ 1.4 keV) characteristic of the virial temperature of the ~10^{13} M_{sun} halo expected in the NGC 5044 group. However, in view of the morphological disturbances and X-ray holes visible in the Chandra image within R ~10 kpc, bubbles of gas heated to ~T_h in this region may be formed by intermittent AGN feedback. Some additional heating at larger radii may be associated with the evolution of the cold front near R ~50 kpc, as suggested by the sharp edge in the EPIC images.
Using new XMM and Chandra observations we present an analysis of the metal abundances of the hot gas within a radius of 100 kpc of the bright nearby galaxy group NGC 5044. Motivated by the inconsistent abundance and temperature determinations obtained by different observers for X-ray groups, we provide a detailed investigation of the systematic errors on the derived abundances considering the effects of the temperature distribution, calibration, plasma codes, bandwidth, Galactic Nh, and background rate. The iron abundance (Fe) drops from Fe ~1 solar within R ~50 kpc to Fe ~0.4 solar near R=100 kpc. This radial decline in Fe is highly significant: Fe=1.09 +/- 0.04 solar (stat) +/- 0.05 solar + 0.18 solar (sys) within R=48 kpc (5) compared to Fe=0.44 +/- 0.02 solar (stat) +/- 0.10 solar + 0.13 solar (sys) over R=48-96 kpc (5-10). The data rule out with high confidence a very sub-solar value for Fe within R=48 kpc confirming that previous claims of very sub-solar central Fe values in NGC 5044 were primarily the result of the Fe Bias: i.e., the incorrect assumption of spatially isothermal and single-phase gas when in fact temperature variations exist. Within R=48 kpc we obtain Si/Fe = 0.83 +/- 0.02 (stat) +/- 0.02 + 0.07 (sys) and S/Fe = 0.54 +/- 0.02 (stat) +/- 0.01 + 0.01 (sys) in solar units. These ratios are consistent with their values at larger radii and imply that SNIa have contributed ~80% of the iron mass within a 100 kpc radius of NGC 5044. This SNIa fraction is similar to the Sun and suggests an IMF similar to that of the Milky Way. At the very center (R ~2 kpc) the XMM and Chandra CCDs and the XMM RGS show that the Fe drops to ~50% of its value at immediately larger radius analogously to that seen in some galaxy clusters. (Abridged)
We present results from Chandra and XMM-Newton observations of the bright group of galaxies HCG 62. There are two cavities at about 30 northeast and 20 southwest of the central galaxy in the Chandra image. The energy spectrum shows no significant change in the cavity compared with that in the surrounding region. The radial X-ray profile is described by a sum of 3-beta components with core radii about 2, 10, and 160 kpc, respectively. We studied radial distributions of temperature and metal abundance with joint spectral fit for the Chandra and XMM-Newton data, and two temperatures were required in the inner r< 2 (35 kpc) region. The sharp drop of temperature at r about 5 implies the gravitational mass density even lower than the gas density, suggesting the gas may not be in hydrostatic equilibrium. Fe and Si abundances are 1-2 solar at the center and drop to about 0.1 solar at r about 10. O abundance is less than 0.5 solar and shows a flatter profile. Observed metal distribution supports the view that iron and silicon are produced by type Ia supernova in the central galaxy, while galactic winds by type II supernova have caused wide distribution of oxygen. The supporting mechanism of the cavity is discussed. Pressure for the sum of electrons and magnetic field is too low to displace the hot group gas, and the required pressure due to high energy protons are nearly 700 times higher than the electron pressure. This leaves the origin of the cavities a puzzle, and we discuss other possible origins of the cavities.
A deep Chandra observation of the X-ray bright group, NGC 5044, shows that the central region of this group has been strongly perturbed by repeated AGN outbursts. These recent AGN outbursts have produced many small X-ray cavities, cool filaments and cold fronts. We find a correlation between the coolest X-ray emitting gas and the morphology of the Ha filaments. The Ha filaments are oriented in the direction of the X-ray cavities, suggesting that the warm gas responsible for the Halpha emission originated near the center of NGC 5044 and was dredged up behind the buoyant, AGN-inflated X-ray cavities. A detailed spectroscopic analysis shows that the central region of NGC 5044 contains spatially varying amounts of multiphase gas. The regions with the most inhomogeneous gas temperature distribution tend to correlate with the extended 235 MHz and 610 MHz radio emission detected by the GMRT. This may result from gas entrainment within the radio emitting plasma or mixing of different temperature gas in the regions surrounding the radio emitting plasma by AGN induced turbulence. Accounting for the effects of multiphase gas, we find that the abundance of heavy elements is fairly uniform within the central 100 kpc, with abundances of 60-80% solar for all elements except oxygen, which has a significantly sub-solar abundance. In the absence of continued AGN outbursts, the gas in the center of NGC 5044 should attain a more homogeneous distribution of gas temperature through the dissipation of turbulent kinetic energy and heat conduction in approximately 10e8 yr. The presence of multiphase gas in NGC 5044 indicates that the time between recent AGN outbursts has been less than approximately 10e8 yr.
We examine the reconstruction of galaxy cluster radial density profiles obtained from Chandra and XMM X-ray observations, using high quality data for a sample of twelve objects covering a range of morphologies and redshifts. By comparing the results obtained from the two observatories and by varying key aspects of the analysis procedure, we examine the impact of instrumental effects and of differences in the methodology used in the recovery of the density profiles. We find that the final density profile shape is particularly robust. We adapt the photon weighting vignetting correction method developed for XMM for use with Chandra data, and confirm that the resulting Chandra profiles are consistent with those corrected a posteriori for vignetting effects. Profiles obtained from direct deprojection and those derived using parametric models are consistent at the 1% level. At radii larger than $sim$6, the agreement between Chandra and XMM is better than 1%, confirming an excellent understanding of the XMM PSF. We find no significant energy dependence. The impact of the well-known offset between Chandra and XMM gas temperature determinations on the density profiles is found to be negligible. However, we find an overall normalisation offset in density profiles of the order of $sim$2.5%, which is linked to absolute flux cross-calibration issues. As a final result, the weighted ratios of Chandra to XMM gas masses computed at R2500 and R500 are r=1.03$pm$0.01 and r=1.03$pm$0.03, respectively. Our study confirms that the radial density profiles are robustly recovered, and that any differences between Chandra and XMM can be constrained to the $sim$ 2.5% level, regardless of the exact data analysis details. These encouraging results open the way for the true combination of X-ray observations of galaxy clusters, fully leveraging the high resolution of Chandra and the high throughput of XMM.
This study presents first results from an X-ray mini-survey carried out with XMM-Newton to investigate the diffuse Hot Ionized Medium in the halos of nine nearby star-forming edge-on spiral galaxies. Diffuse gaseous X-ray halos are detected in eight of our targets, covering a wide range of star formation rates from quiescent to starburst cases. For four edge-on spiral galaxies, namely NGC3044, NGC3221, NGC4634, and NGC5775, we present the first published high resolution/sensitivity detections of extended soft X-ray halos. EPIC X-ray contour maps overlaid onto Halpha imaging data reveals that in all cases the presence of X-ray halos is correlated with extraplanar Diffuse Ionized Gas. Moreover, these halos are also associated with non-thermal cosmic ray halos, as evidenced by radio continuum observations. Supplemental UV-data obtained with the OM-telescope at 210nm show Diffuse Ionized Gas to be well associated with UV emission originating in the underlying disk. Beside NGC891, NGC4634 is the second non-starburst galaxy with a diffuse soft X-ray halo (|z|<4kpc). In case of NGC3877, for which we also present the first high resolution X-ray imaging data, no halo emission is detectable. EPIC pn spectra (0.3-12keV) of the diffuse X-ray emission are extracted at different offset positions from the disk, giving evidence to a significant decrease of gas temperatures, electron densities, and gas masses with increasing distance to the plane. A comparison between dynamical and radiative cooling time scales implies that the outflow in all targets is likely to be sustained. We find very strong indications that spatially correlated multi-phase gaseous halos are created by star forming activity in the disk plane.