No Arabic abstract
We present results from Chandra and XMM-Newton observations of the bright group of galaxies HCG 62. There are two cavities at about 30 northeast and 20 southwest of the central galaxy in the Chandra image. The energy spectrum shows no significant change in the cavity compared with that in the surrounding region. The radial X-ray profile is described by a sum of 3-beta components with core radii about 2, 10, and 160 kpc, respectively. We studied radial distributions of temperature and metal abundance with joint spectral fit for the Chandra and XMM-Newton data, and two temperatures were required in the inner r< 2 (35 kpc) region. The sharp drop of temperature at r about 5 implies the gravitational mass density even lower than the gas density, suggesting the gas may not be in hydrostatic equilibrium. Fe and Si abundances are 1-2 solar at the center and drop to about 0.1 solar at r about 10. O abundance is less than 0.5 solar and shows a flatter profile. Observed metal distribution supports the view that iron and silicon are produced by type Ia supernova in the central galaxy, while galactic winds by type II supernova have caused wide distribution of oxygen. The supporting mechanism of the cavity is discussed. Pressure for the sum of electrons and magnetic field is too low to displace the hot group gas, and the required pressure due to high energy protons are nearly 700 times higher than the electron pressure. This leaves the origin of the cavities a puzzle, and we discuss other possible origins of the cavities.
We report on the results of an analysis of Chandra, XMM-Newton and new GMRT data of the X-ray bright compact group of galaxies HCG 62, which is one of the few groups known to possess clear, small X-ray cavities in the inner regions. This is part of an ongoing X-ray/low-frequency radio study of 18 groups, initially chosen for the availability of good-quality X-ray data and evidence for AGN/hot gas interaction. At higher frequency (1.4 GHz), the HCG 62 cavity system shows minimal if any radio emission, but the new GMRT observations at 235 MHz and 610 MHz clearly detect extended low-frequency emission from radio lobes corresponding to the cavities. By means of the synergy of X-ray and low-frequency radio observations, we compare and discuss the morphology, luminosity and pressure of the gas and of the radio source. We find that the radio source is radiatively inefficient, with a ratio of radio luminosity to mechanical cavity power of $sim 10^{-4}$, and that the radio pressure of the lobes is about one order of magnitude lower than the X-ray pressure of the surrounding thermal gas. Thanks to the high spatial resolution of the Chandra surface brightness and temperature profiles, we also identify a shock front located at 36 kpc to the south-west of the group center, close to the southern radio lobe, with a Mach number $sim 1.5$ and a total power which is about one order of magnitude higher than the cavity power. Such a shock may have heated the gas in the southern region, as indicated by the temperature map. The shock may also explain the arc-like region of enriched gas seen in the iron abundance map, as this may be produced by a non-Maxwellian electron distribution near its front.
The archival XMM-Newton data of the central region of M31 were analyzed for diffuse X-ray emission. Point sources with the 0.5--10 keV luminosity exceeding $sim 4 times 10^{35}$ erg s$^{-1}$ were detected. Their summed spectra are well reproduced by a combination of a disk black-body component and a black-body component, implying that the emission mainly comes from an assembly of luminous low-mass X-ray binaries. After excluding these point sources, spectra were accumulated over a circular region of $6arcmin$ (1.2 kpc) centered on the nucleus. In the energy range above 2 keV, these residual spectra are understood mainly as contributions of unresolved faint sources and spill-over of photons from the excluded point sources. There is in addition a hint of a $sim 6.6$ keV line emission, which can be produced by a hot (temperature several keV) thin-thermal plasma. Below 2 keV, the spectra involve three additional softer components expressed by thin-thermal plasma emission models, of which the temperatures are $sim 0.6$, $sim 0.3$, and $sim 0.1$ keV. Their 0.5--10 keV luminosities within 6$arcmin$ are measured to be $sim 1.2 times 10^{38}$ erg s$^{-1}$, $sim 1.6 times 10^{38}$ erg s$^{-1}$, and $sim 4 times 10^{37}$ erg s$^{-1}$ in the order of decreasing temperature. The archival Chandra data of the central region of M31 yielded consistent results. By incorporating different annular regions, all the three softer thermal components were confirmed to be significantly extended. These results are compared with reports from previous studies. A discussion is presented on the origin of each thermal emission component.
We choose the bright compact group HCG 62, which was found to exhibit both excess X-ray emission and high Fe abundance to the southwest of its core, as an example to study the impact of mergers on chemical enrichment in the intragroup medium. We first reanalyze the high-quality Chandra and XMM-Newton archive data to search for the evidence for additional SN II yields, which is expected as a direct result of the possible merger-induced starburst. We reveal that, similar to the Fe abundance, the Mg abundance also shows a high value in both the innermost region and the southwest substructure, forming a high-abundance plateau, meanwhile all the SN Ia and SN II yields show rather flat distributions in $>0.1r_{200}$ in favor of an early enrichment. Then we carry out a series of idealized numerical simulations to model the collision of two initially isolated galaxy groups by using the TreePM-SPH GADGET-3 code. We find that the observed X-ray emission and metal distributions, as well as the relative positions of the two bright central galaxies with reference to the X-ray peak, can be well reproduced in a major merger with a mass ratio of 3 when the merger-induced starburst is assumed. The `best-match snapshot is pinpointed after the third pericentric passage when the southwest substructure is formed due to gas sloshing. By following the evolution of the simulated merging system, we conclude that the effects of such a major merger on chemical enrichment are mostly restricted within the core region when the final relaxed state is reached.
Using new XMM and Chandra observations we present an analysis of the metal abundances of the hot gas within a radius of 100 kpc of the bright nearby galaxy group NGC 5044. Motivated by the inconsistent abundance and temperature determinations obtained by different observers for X-ray groups, we provide a detailed investigation of the systematic errors on the derived abundances considering the effects of the temperature distribution, calibration, plasma codes, bandwidth, Galactic Nh, and background rate. The iron abundance (Fe) drops from Fe ~1 solar within R ~50 kpc to Fe ~0.4 solar near R=100 kpc. This radial decline in Fe is highly significant: Fe=1.09 +/- 0.04 solar (stat) +/- 0.05 solar + 0.18 solar (sys) within R=48 kpc (5) compared to Fe=0.44 +/- 0.02 solar (stat) +/- 0.10 solar + 0.13 solar (sys) over R=48-96 kpc (5-10). The data rule out with high confidence a very sub-solar value for Fe within R=48 kpc confirming that previous claims of very sub-solar central Fe values in NGC 5044 were primarily the result of the Fe Bias: i.e., the incorrect assumption of spatially isothermal and single-phase gas when in fact temperature variations exist. Within R=48 kpc we obtain Si/Fe = 0.83 +/- 0.02 (stat) +/- 0.02 + 0.07 (sys) and S/Fe = 0.54 +/- 0.02 (stat) +/- 0.01 + 0.01 (sys) in solar units. These ratios are consistent with their values at larger radii and imply that SNIa have contributed ~80% of the iron mass within a 100 kpc radius of NGC 5044. This SNIa fraction is similar to the Sun and suggests an IMF similar to that of the Milky Way. At the very center (R ~2 kpc) the XMM and Chandra CCDs and the XMM RGS show that the Fe drops to ~50% of its value at immediately larger radius analogously to that seen in some galaxy clusters. (Abridged)
We present Chandra and XMM-Newton observations of the composite star-forming/Seyfert galaxy IRAS20051-1117. The X-ray imaging and spectral properties reveal the presence of an active nucleus. The Chandra image shows a strong nuclear point source (L(2-10 keV) ~ 4x10^{42} erg s-1). The nuclear X-ray source coincides with a bright, alsoun-resolved, UV source which appears in the xmm Optical Monitor images. The xmm and chandra spectrum is well represented by a power-law with a photon index of ~1.7-1.9 and a thermal component with a temperature of 0.2 keV. We also detect an Fe line at 6.4 keV with an equivalent width of ~0.3 keV, typical of the iron lines that have been detected in the X-ray spectra of classical AGN. We find no evidence for short-term variability in the X-ray light curves, while we detect no variations between the xmm and chandra observations which are separated by about 20 days. Optical spectroscopic observations which were performed ~2.5 months after the xmm observation show that the optical spectrum is dominated by a star-forming galaxy component, although a weak broad Halpha component is present, in agreement with the results from past observations. The lack of strong AGN signatures in the optical spectrum of the source can be explained by the dilution of the nuclear AGN emission by the nuclear star-forming component and the strong emission of the underlying, bright host galaxy.