No Arabic abstract
This study presents first results from an X-ray mini-survey carried out with XMM-Newton to investigate the diffuse Hot Ionized Medium in the halos of nine nearby star-forming edge-on spiral galaxies. Diffuse gaseous X-ray halos are detected in eight of our targets, covering a wide range of star formation rates from quiescent to starburst cases. For four edge-on spiral galaxies, namely NGC3044, NGC3221, NGC4634, and NGC5775, we present the first published high resolution/sensitivity detections of extended soft X-ray halos. EPIC X-ray contour maps overlaid onto Halpha imaging data reveals that in all cases the presence of X-ray halos is correlated with extraplanar Diffuse Ionized Gas. Moreover, these halos are also associated with non-thermal cosmic ray halos, as evidenced by radio continuum observations. Supplemental UV-data obtained with the OM-telescope at 210nm show Diffuse Ionized Gas to be well associated with UV emission originating in the underlying disk. Beside NGC891, NGC4634 is the second non-starburst galaxy with a diffuse soft X-ray halo (|z|<4kpc). In case of NGC3877, for which we also present the first high resolution X-ray imaging data, no halo emission is detectable. EPIC pn spectra (0.3-12keV) of the diffuse X-ray emission are extracted at different offset positions from the disk, giving evidence to a significant decrease of gas temperatures, electron densities, and gas masses with increasing distance to the plane. A comparison between dynamical and radiative cooling time scales implies that the outflow in all targets is likely to be sustained. We find very strong indications that spatially correlated multi-phase gaseous halos are created by star forming activity in the disk plane.
X-ray emitting atmospheres of non-rotating early-type galaxies and their connection to central active galactic nuclei have been thoroughly studied over the years. However, in systems with significant angular momentum, processes of heating and cooling are likely to proceed differently. We present an analysis of the hot atmospheres of six lenticulars and a spiral galaxy to study the effects of angular momentum on the hot gas properties. We find an alignment between the hot gas and the stellar distribution, with the ellipticity of the X-ray emission generally lower than that of the optical stellar emission, consistent with theoretical predictions for rotationally-supported hot atmospheres. The entropy profiles of NGC 4382 and the massive spiral galaxy NGC 1961 are significantly shallower than the entropy distribution in other galaxies, suggesting the presence of strong heating (via outflows or compressional) in the central regions of these systems. Finally, we investigate the thermal (in)stability of the hot atmospheres via criteria such as the TI- and C-ratio, and discuss the possibility that the discs of cold gas present in these objects have condensed out of the hot atmospheres.
Using new XMM and Chandra observations we present an analysis of the temperature structure of the hot gas within a radius of 100 kpc of the bright nearby galaxy group NGC 5044. A spectral deprojection analysis of data extracted from circular annuli reveals that a two-temperature model (2T) of the hot gas is favored over single-phase or cooling flow (M_dot = 4.5 +/- 0.2 M_{sun}/yr) models within the central ~30 kpc. Alternatively, the data can be fit equally well if the temperature within each spherical shell varies continuously from ~T_h to T_c ~ T_h/2, but no lower. The high spatial resolution of the Chandra data allows us to determine that the temperature excursion T_h --> T_c required in each shell exceeds the temperature range between the boundaries of the same shell in the best-fitting single-phase model. This is strong evidence for a multi-phase gas having a limited temperature range. The cooler component of the 2T model has a temperature (T_c ~ 0.7 keV) similar to the kinetic temperature of the stars. The hot phase has a temperature (T_h ~ 1.4 keV) characteristic of the virial temperature of the ~10^{13} M_{sun} halo expected in the NGC 5044 group. However, in view of the morphological disturbances and X-ray holes visible in the Chandra image within R ~10 kpc, bubbles of gas heated to ~T_h in this region may be formed by intermittent AGN feedback. Some additional heating at larger radii may be associated with the evolution of the cold front near R ~50 kpc, as suggested by the sharp edge in the EPIC images.
Observations of local X-ray absorbers, high-velocity clouds, and distant quasar absorption line systems suggest that a significant fraction of baryons may reside in multi-phase, low-density, extended, ~100 kpc, gaseous halos around normal galaxies. We present a pair of high-resolution SPH (smoothed particle hydrodynamics) simulations that explore the nature of cool gas infall into galaxies, and the physical conditions necessary to support the type of gaseous halos that seem to be required by observations. The two simulations are identical other than their initial gas density distributions: one is initialized with a standard hot gas halo that traces the cuspy profile of the dark matter, and the other is initialized with a cored hot halo with a high central entropy, as might be expected in models with early pre-heating feedback. Galaxy formation proceeds in dramatically different fashions in these two cases. While the standard cuspy halo cools rapidly, primarily from the central region, the cored halo is quasi-stable for ~4 Gyr and eventually cools via the fragmentation and infall of clouds from ~100 kpc distances. After 10 Gyr of cooling, the standard halos X-ray luminosity is ~100 times current limits and the resultant disk galaxy is twice as massive as the Milky Way. In contrast, the cored halo has an X-ray luminosity that is in line with observations, an extended cloud population reminiscent of the high-velocity cloud population of the Milky Way, and a disk galaxy with half the mass and ~50% more specific angular momentum than the disk formed in the low-entropy simulation. These results suggest that the distribution and character of halo gas provides an important testing ground for galaxy formation models and may be used to constrain the physics of galaxy formation.
We study the synchrotron radio emission from extra-planar regions of star forming galaxies. We use ideal magneto-hydrodynamical (MHD) simulations of a rotating Milky Way-type disk galaxy with distributed star formation sites for three star formation rates (SFRs) (0.3, 3, 30 M$_{odot}$ yr$^{-1}$). From our simulations, we see emergence of galactic-scale magnetised outflows, carrying gas from the disk. We compare the morphology of the outflowing gas with hydrodynamic (HD) simulations. We look at the spatial distribution of magnetic field in the outflows. Assuming that a certain fraction of gas energy density is converted into cosmic ray energy density, and using information about the magnetic field, we obtain synchrotron emissivity throughout the simulation domain. We generate the surface brightness maps at a frequency of 1.4 GHz. The outflows are more extended in the vertical direction than radial and hence have an oblate shape. We further find that the matter right behind the outer shock, shines brighter in these maps than that above or below. To understand whether this feature can be observed, we produce vertical intensity profiles. We convolve the vertical intensity profile with the typical beam sizes of radio telescopes, for a galaxy located at 10 Mpc (similar to NGC 891) in order to estimate the radio scale height to compare with observations. We find that for our SFRs this feature will lie below the RMS noise limit of instruments. The radio scale height is found to be $sim 300-1200$ pc , depending on the resolution of the telescope. We relate the advection speed of the outer shock with the surface density of star formation as $rm{v}_{rm adv} propto Sigma_{rm SFR}^{0.3}$ which is consistent with earlier observations and analytical estimates.
We report the results of a detailed analysis of the temperature structure of the X-ray emitting plasma halo of M~87, the cD galaxy of the Virgo Cluster. Using the MEKAL model, the data provide strong indications that the intracluster medium has a single phase structure locally, except the regions associated to the radio structures. The deprojected spectrum at each radius is well fitted by a single temperature MEKAL model, except for the very central region ($<$ 2 arcmin) which seems to be affected by the jet and radio lobe structure. The temperature of the intracluster plasma is 1 keV at the center and gradually increases to 2.5 keV at 80 kpc. We have also fitted spectra using the APEC code. Although the large changes of the strength of K$alpha$ lines causes a discrepancy between the Fe-L and Fe-K lines for the APEC results, the overall temperature structure has not changed. There is no sign of excess absorption in the spectral data. The single-phase nature of the intracluster medium is in conflict with the standard cooling flow model which is based on a multi-phase temperature structure. In addition, the signature of gas cooling below 0.8 keV to zero temperature is not observed as expected for a cooling flow. The gravitational mass profile derived from the temperature and density distribution of the intracluster gas shows two distinct contributions that can be assigned to the gravitational potential of the cD galaxy and the cluster. The central temperature of the intracluster medium agrees well with the potential depth and the velocity dispersion of the cD galaxy. The latter result implies that the central region of the intracluster medium is equivalent to a virialized interstellar medium in M 87.