No Arabic abstract
A deep Chandra observation of the X-ray bright group, NGC 5044, shows that the central region of this group has been strongly perturbed by repeated AGN outbursts. These recent AGN outbursts have produced many small X-ray cavities, cool filaments and cold fronts. We find a correlation between the coolest X-ray emitting gas and the morphology of the Ha filaments. The Ha filaments are oriented in the direction of the X-ray cavities, suggesting that the warm gas responsible for the Halpha emission originated near the center of NGC 5044 and was dredged up behind the buoyant, AGN-inflated X-ray cavities. A detailed spectroscopic analysis shows that the central region of NGC 5044 contains spatially varying amounts of multiphase gas. The regions with the most inhomogeneous gas temperature distribution tend to correlate with the extended 235 MHz and 610 MHz radio emission detected by the GMRT. This may result from gas entrainment within the radio emitting plasma or mixing of different temperature gas in the regions surrounding the radio emitting plasma by AGN induced turbulence. Accounting for the effects of multiphase gas, we find that the abundance of heavy elements is fairly uniform within the central 100 kpc, with abundances of 60-80% solar for all elements except oxygen, which has a significantly sub-solar abundance. In the absence of continued AGN outbursts, the gas in the center of NGC 5044 should attain a more homogeneous distribution of gas temperature through the dissipation of turbulent kinetic energy and heat conduction in approximately 10e8 yr. The presence of multiphase gas in NGC 5044 indicates that the time between recent AGN outbursts has been less than approximately 10e8 yr.
We present AGN feedback in the interesting cases of two groups: AWM 4 and NGC 5044. AWM 4 is characterized by a combination of properties which seems to defy the paradigm for AGN heating in cluster cores: a flat inner temperature profile indicative of a past, major heating episode which completely erased the cool core, as testified by the high central cooling time (> 3 Gyrs) and by the high central entropy level (~ 50 keV cm^2), and yet an active central radio galaxy with extended radio lobes out to 100 kpc, revealing recent feeding of the central massive black hole. A recent Chandra observation has revealed the presence of a compact cool corona associated with the BCG, solving the puzzle of the apparent lack of low entropy gas surrounding a bright radio source, but opening the question of its origin. NGC 5044 shows in the inner 10 kpc a pair of cavities together with a set of bright filaments. The cavities are consistent with a recent AGN outburst as also indicated by the extent of dust and H_alpha emission even though the absence of extended 1.4 GHz emission remains to be explained. The soft X-ray filaments coincident with H_alpha and dust emission are cooler than those which do not correlate with optical and infrared emission, suggesting that dust-aided cooling can contribute to the overall cooling. For the first time sloshing cold fronts at the scale of a galaxy group have been observed in this object.
We present a two-dimensional analysis of the bright nearby galaxy group NGC 5044 using the currently available Chandra and XMM data. In the inner 10 kpc a pair of cavities are evident together with a set of bright X-ray filaments. If the cavities are interpreted as gas displaced by relativistic plasma inflated by an AGN, even in the absence of extended 1.4 GHz emission, this would be consistent with a recent outburst as also indicated by the extent of dust and H_alpha emission. The soft X-ray filaments coincident with H_alpha and dust emission are cooler than the ones which do not correlate with optical and infrared emission. We suggest that dust-aided cooling contributes to form warm (T =10^4 K) gas, emitting H_alpha radiation. At 31 kpc and 67 kpc a pair of cold fronts are present, indicative of sloshing due to a dynamical perturbation caused by accretion of a less massive group, also suggested by the peculiar velocity of the brightest galaxy NGC 5044 with respect to the mean group velocity.
We present multicolour imaging for 33 dwarf and intermediate-luminosity galaxies in the field of the NGC 5044 Group, complemented with mid-resolution spectroscopy for a subsample of 13 objects. With these data, a revised membership and morphological classification is made for the galaxies in the sample. We were able to confirm all but one of the definite members included in the spectroscopic subsample, which were originally classified based on morphological criteria; however, an important fraction of background galaxies is probably present among likely and possible members. The presence of a nucleus could be detected in just five out of the nine galaxies originally classified as dE,N, thus confirming the intrisic difficulty of photographic-plate morphological classification for this kind of object. Our deep surface photometry provided clear evidences for disc structure in at least three galaxies previously catalogued as dE or dS0. Their transition-type properties are also evident from the colour-magnitude diagram, where they lie near the late-type galaxies locus, suggesting an evolutionary connection between a parent disc-galaxy population and at least part of present-day dEs. Six new dSph candidates were also found, most of them at small projected distances from NGC 5044, the central galaxy of the Group. The NGC 5044 Group appears clearly defined in redshift space, with a mean heliocentric radial velocity, <v_r>=2461 +/- 84 km/s (z=0.0082), and a moderate dispersion, sigma_{v_r}=431 km/s. Our data show no luminosity segregation for early-type galaxies: both dwarf and bright E/S0 systems show very similar velocity distributions (sigma_{v_r} ~ 290 km/s), in contrast to late-type galaxies that seem to display a broader distribution (sigma_{v_r} ~ 680 km/s).
Context. Ultra-compact dwarfs (UCDs) are stellar systems displaying colours and metallicities between those of globular clusters (GCs) and early-type dwarf galaxies, as well as sizes of Reff <= 100 pc and luminosities in the range -13.5 < MV < -11 mag. Although their origin is still subject of debate, the most popular scenarios suggest that they are massive star clusters or the nuclei of tidally stripped dwarf galaxies. Aims. NGC 5044 is the central massive elliptical galaxy of the NGC 5044 group. Its GC/UCD system is completely unexplored. Methods. In Gemini+GMOS deep images of several fields around NGC 5044 and in spectroscopic multi-object data of one of these fields, we detected an unresolved source with g~20.6 mag, compatible with being an UCD. Its radial velocity was obtained with FXCOR and the penalized pixel-fitting (pPXF) code. To study its stellar population content, we measured the Lick/IDS indices and compared them with predictions of single stellar population models, and we used the full spectral fitting technique. Results. The spectroscopic analysis of the UCD revealed a radial velocity that agrees with the velocity of the elliptical galaxy NGC 5044. From the Lick/IDS indices, we have obtained a luminosity-weighted age and metallicity of 11.7+/-1.4 Gyr and [Z/H] = -0.79 +/- 0.04 dex, respectively, as well as [alpha/Fe] = 0.30 +/- 0.06. From the full spectral fitting technique, we measured a lower age (8.52 Gyr) and a similar total metallicity ([Z/H] = -0.86 dex). Conclusions. Our results indicate that NGC 5044-UCD1 is most likely an extreme GC (MV ~ -12.5 mag) belonging to the GC system of the elliptical galaxy NGC 5044.
Observations made with the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) to constrain the hard X-ray emission in the NGC 5044 group are reported here. Modeling a combined PCA and ROSAT position sensitive proportional counter (PSPC) spectrum with a 0.5 - 15 keV energy range shows excess hard emission above 4 keV. Addition of a powerlaw component with spectral index of 2.6 - 2.8 and luminosity of 2.6 x10^42 ergs/s within 700 kpc in the observed energy band removes these residuals. Thus, there is a detection of a significant non-thermal component that is 32% of the total X-ray emission. Point source emission makes up at most 14% of the non-thermal emission from the NGC 5044 group. Therefore, the diffuse, point source subtracted, non-thermal component is 2.2 - 3.0x10^42 ergs/s . The cosmic-ray electron energy density is 3.6 x10^[-12] ergs cm-3 and the average magnetic field is 0.034 muGauss in the largest radio emitting region. The ratio of cosmic-ray electron energy density to magnetic field energy density, ~2.5x10^4, is significantly out of equipartition and is therefore atypical of radio lobes. In addition, the groups small size and low non-thermal energy density strongly contradicts the size-energy relationship found for radio lobes. Thus, it is unlikely to the related to the active galaxy and is most likely a relic of the merger. The energy in cosmic-rays and magnetic field is consistent with simulations of cosmic-ray acceleration by merger shocks.