No Arabic abstract
We describe the design and current status of a new X-ray cluster survey aimed at the compilation of a statistically complete sample of very X-ray luminous (and thus, by inference, massive), distant clusters of galaxies. The primary goal of the MAssive Cluster Survey (MACS) is to increase the number of known massive clusters at z>0.3 from a handful to hundreds. Upon completion of the survey, the MACS cluster sample will greatly improve our ability to study quantitatively the physical and cosmological parameters driving cluster evolution at redshifts and luminosities poorly sampled by all existing surveys. To achieve these goals we apply an X-ray flux and X-ray hardness-ratio cut to select distant cluster candidates from the ROSAT Bright Source Catalogue. Starting from a list of more than 5,000 X-ray sources within the survey area of 22,735 square degrees we use positional cross-correlations with public catalogues of Galactic and extragalactic objects, reference to APM colours, visual inspection of Digitized Sky Survey images, extensive CCD imaging, and finally spectroscopic observations with the University of Hawaiis 2.2m and the Keck 10m telescopes to compile the final cluster sample. We discuss in detail the X-ray selection procedure and the resulting selection function, and present model predictions for the number of distant clusters expected to emerge from MACS. At the time of this writing the MACS cluster sample comprises 101 spectroscopically confirmed clusters at 0.3<z<0.6; more than two thirds of these are new discoveries. Our preliminary sample is already 15 times larger than that of the EMSS in the same redshift and X-ray luminosity range.
Some luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) host extremely compact and dusty nuclei. The intense infrared radiation arising from warm dust in these sources is prone to excite vibrational levels of molecules such as HCN. This results in emission from the rotational transitions of vibrationally excited HCN (HCN-vib), with the brightest emission found in compact obscured nuclei (CONs). We aim to establish how common CONs are in the local Universe, and whether their prevalence depends on the luminosity or other properties of the host galaxy. We have conducted an Atacama Large Millimeter/submillimeter Array (ALMA) survey of the rotational J=3-2 transition of HCN-vib in a sample of 46 far-infrared luminous galaxies. Compact obscured nuclei are identified in 38 percent of ULIRGs, 21 percent of LIRGs, and 0 percent of lower luminosity galaxies. We find no dependence on the inclination of the host galaxy, but strong evidence of lower IRAS 25 to 60 {mu}m flux density ratios (f25/f60) in CONs compared to the rest of the sample. Furthermore, we find that CONs have stronger silicate features (s9.7{mu}m) but similar PAH equivalent widths (EQW6.2{mu}m) compared to other galaxies. In the local Universe, CONs are primarily found in (U)LIRGs. High resolution continuum observations of the individual nuclei are required to determine if the CON phenomenon is related to the inclinations of the nuclear disks. The lower f25/f60 ratios in CONs as well as the results for the mid-infrared diagnostics investigated are consistent with large dust columns shifting the nuclear radiation to longer wavelengths, making the mid- and far-infrared photospheres significantly cooler than the interior regions. To assess the importance of CONs in the context of galaxy evolution, it is necessary to extend this study to higher redshifts where (U)LIRGs are more common.
We describe a recently realized experiment producing the most spherical cavitation bubbles today. The bubbles grow inside a liquid from a point-plasma generated by a nanosecond laser pulse. Unlike in previous studies, the laser is focussed by a parabolic mirror, resulting in a plasma of unprecedented symmetry. The ensuing bubbles are sufficiently spherical that the hydrostatic pressure gradient caused by gravity becomes the dominant source of asymmetry in the collapse and rebound of the cavitation bubbles. To avoid this natural source of asymmetry, the whole experiment is therefore performed in microgravity conditions (ESA, 53rd and 56th parabolic flight campaign). Cavitation bubbles were observed in microgravity (~0g), where their collapse and rebound remain spherical, and in normal gravity (1g) to hyper-gravity (1.8g), where a gravity-driven jet appears. Here, we describe the experimental setup and technical results, and overview the science data. A selection of high-quality shadowgraphy movies and time-resolved pressure data is published online.
We have analysed the growth of Brightest Group Galaxies and Brightest Cluster Galaxies (BGGs/BCGs) over the last 3 billion years using a large sample of 883 galaxies from the Galaxy And Mass Assembly Survey. By comparing the stellar mass of BGGs and BCGs in groups and clusters of similar dynamical masses, we find no significant growth between redshift $z=0.27$ and $z=0.09$. We also examine the number of BGGs/BCGs that have line emission, finding that approximately 65 per cent of BGGs/BCGs show H$alpha$ in emission. From the galaxies where the necessary spectroscopic lines were accurately recovered (54 per cent of the sample), we find that half of this (i.e. 27 per cent of the sample) harbour on-going star formation with rates up to $10,$M$_{odot}$yr$^{-1}$, and the other half (i.e. 27 per cent of the sample) have an active nucleus (AGN) at the centre. BGGs are more likely to have ongoing star formation, while BCGs show a higher fraction of AGN activity. By examining the position of the BGGs/BCGs with respect to their host dark matter halo we find that around 13 per cent of them do not lie at the centre of the dark matter halo. This could be an indicator of recent cluster-cluster mergers. We conclude that BGGs and BCGs acquired their stellar mass rapidly at higher redshifts as predicted by semi-analytic models, mildly slowing down at low redshifts.
We have obtained deep, multi-band imaging observations around three of the most distant known quasars at redshifts z>6. Standard accretion theory predicts that the supermassive black holes present in these quasars were formed at a very early epoch. If a correlation between black hole mass and dark matter halo mass is present at these early times, then these rare supermassive black holes will be located inside the most massive dark matter halos. These are therefore ideal locations to search for the first clusters of galaxies. We use the Lyman-break technique to identify star-forming galaxies at high redshifts. Our observations show no overdensity of star-forming galaxies in the fields of these quasars. The lack of (dust-free) luminous starburst companions indicates that the quasars may be the only massive galaxies in their vicinity undergoing a period of intense activity.
At redshift z = 2, when the Universe was just three billion years old, half of the most massive galaxies were extremely compact and had already exhausted their fuel for star formation(1-4). It is believed that they were formed in intense nuclear starbursts and that they ultimately grew into the most massive local elliptical galaxies seen today, through mergers with minor companions(5,6), but validating this picture requires higher-resolution observations of their centres than is currently possible. Magnification from gravitational lensing offers an opportunity to resolve the inner regions of galaxies(7). Here we report an analysis of the stellar populations and kinematics of a lensed z = 2.1478 compact galaxy, which surprisingly turns out to be a fast-spinning, rotationally supported disk galaxy. Its stars must have formed in a disk, rather than in a merger-driven nuclear starburst(8). The galaxy was probably fed by streams of cold gas, which were able to penetrate the hot halo gas until they were cut off by shock heating from the dark matter halo(9). This result confirms previous indirect indications(10-13) that the first galaxies to cease star formation must have gone through major changes not just in their structure, but also in their kinematics, to evolve into present-day elliptical galaxies.