No Arabic abstract
Some luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) host extremely compact and dusty nuclei. The intense infrared radiation arising from warm dust in these sources is prone to excite vibrational levels of molecules such as HCN. This results in emission from the rotational transitions of vibrationally excited HCN (HCN-vib), with the brightest emission found in compact obscured nuclei (CONs). We aim to establish how common CONs are in the local Universe, and whether their prevalence depends on the luminosity or other properties of the host galaxy. We have conducted an Atacama Large Millimeter/submillimeter Array (ALMA) survey of the rotational J=3-2 transition of HCN-vib in a sample of 46 far-infrared luminous galaxies. Compact obscured nuclei are identified in 38 percent of ULIRGs, 21 percent of LIRGs, and 0 percent of lower luminosity galaxies. We find no dependence on the inclination of the host galaxy, but strong evidence of lower IRAS 25 to 60 {mu}m flux density ratios (f25/f60) in CONs compared to the rest of the sample. Furthermore, we find that CONs have stronger silicate features (s9.7{mu}m) but similar PAH equivalent widths (EQW6.2{mu}m) compared to other galaxies. In the local Universe, CONs are primarily found in (U)LIRGs. High resolution continuum observations of the individual nuclei are required to determine if the CON phenomenon is related to the inclinations of the nuclear disks. The lower f25/f60 ratios in CONs as well as the results for the mid-infrared diagnostics investigated are consistent with large dust columns shifting the nuclear radiation to longer wavelengths, making the mid- and far-infrared photospheres significantly cooler than the interior regions. To assess the importance of CONs in the context of galaxy evolution, it is necessary to extend this study to higher redshifts where (U)LIRGs are more common.
Understanding the nuclear growth and feedback processes in galaxies requires investigating their often obscured central regions. One way to do this is to use (sub)millimeter line emission from vibrationally excited HCN (HCN-vib). It has been suggested that the most intense HCN-vib emission from a galaxy is connected to a phase of nuclear growth that occurs before the nuclear feedback processes have been fully developed. We aim to investigate if there is a connection between the presence of strong HCN-vib emission and the development of feedback in (U)LIRGs. We collected literature and archival data to compare the luminosities of rotational lines of HCN-vib, normalized to the total infrared luminosity, to the median velocities of 119 {mu}m OH absorption lines, potentially indicating outflows, in a total of 17 (U)LIRGs. The most HCN-vib luminous systems all lack signatures of significant molecular outflows in the far-infrared OH absorption lines. However, at least some of the systems with bright HCN-vib emission do have fast and collimated outflows that can be seen in spectral lines at longer wavelengths. We conclude that the galaxy nuclei with the highest L(HCN-vib)/L(IR) do not drive wide-angle outflows detectable using the median velocities of far-infrared OH absorption lines. It is possible that this is due to an orientation effect where sources which are oriented in such a way that their outflows are not along our line of sight also radiate a smaller proportion of their infrared luminosity in our direction. It could also be that massive wide-angle outflows destroy the deeply embedded regions responsible for bright HCN-vib emission, so that the two phenomena cannot coexist. This would strengthen the idea that vibrationally excited HCN traces a heavily obscured stage of evolution before nuclear feedback mechanisms are fully developed.
We present the first search for the 5.29 GHz methanimine($rm{CH}_2rm{NH}$) $1_{10}-1_{11}$ transition toward a sample of galaxy nuclei. We target seven galaxies that host Compact Obscured Nuclei (CONs) with the Karl G. Jansky Very Large Array. These galaxies are characterized by Compton-thick cores. $rm{CH}_2rm{NH}$ emission is detected toward six CONs. The brightness temperatures measured toward Arp220 indicate maser emission. Isotropic luminosities of the $rm{CH}_2rm{NH}$ transition, from all sources where it is detected, exceed 1 L$_{odot}$ and thus may be considered megamasers. We also detect formaldehyde ($rm{H}_2rm{CO}$) emission toward three CONs. The isotropic $rm{CH}_2rm{NH}$ luminosities are weakly correlated with the infrared luminosity of the host galaxy and strongly correlated with OH megamaser luminosities from the same galaxies. Non-LTE radiative transfer models suggest that the maser is pumped by the intense mm/submm radiation field of the CONs. Our study suggests that $rm{CH}_2rm{NH}$ megamasers are linked to the nuclear processes within 100 pc of the Compton Thick nucleus within CONs.
We present HST WFC3 F160W imaging and infrared spectral energy distributions for twelve extremely luminous, obscured AGN at $1.8<z<2.7$, selected via Hot, Dust Obscured mid-infrared colors. Their infrared luminosities span $2-15times10^{13}$L$_{odot}$, making them among the most luminous objects in the Universe at $zsim2$. In all cases the infrared emission is consistent with arising at least in most part from AGN activity. The AGN fractional luminosities are higher than those in either sub-millimeter galaxies, or AGN selected via other mid-infrared criteria. Adopting the $G$, M$_{20}$ and $A$ morphological parameters, together with traditional classification boundaries, infers that three quarters of the sample as mergers. Our sample do not, however, show any correlation between the considered morphological parameters and either infrared luminosity or AGN fractional luminosity. Moreover, their asymmetries and effective radii are distributed identically to those of massive galaxies at $zsim2$. We conclude that our sample is not preferentially associated with mergers, though a significant merger fraction is still plausible. Instead, we propose that our sample are examples of the massive galaxy population at $zsim2$ that harbor a briefly luminous, flickering AGN, and in which the $G$ and M$_{20}$ values have been perturbed, due to either the AGN, and/or the earliest formation stages of a bulge in an inside-out manner. Furthermore, we find that the mass assembly of the central black holes in our sample leads the mass assembly of any bulge component. Finally, we speculate that our sample represent a small fraction of the immediate antecedents of compact star-forming galaxies at $zsim2$.
Highly obscured active galactic nuclei (AGN) are common in nearby galaxies, but are difficult to observe beyond the local Universe, where they are expected to significantly contribute to the black hole accretion rate density. Furthermore, Compton-thick (CT) absorbers (NH>10^24 cm^-2) suppress even the hard X-ray (2-10 keV) AGN nuclear emission, and therefore the column density distribution above 10^24 cm^-2 is largely unknown. We present the identification and multi-wavelength properties of a heavily obscured (NH>~10^25 cm^-2), intrinsically luminous (L(2-10keV)>10^44 erg s^-1) AGN at z=0.353 in the COSMOS field. Several independent indicators, such as the shape of the X-ray spectrum, the decomposition of the spectral energy distribution and X-ray/[NeV] and X-ray/6{mu}m luminosity ratios, agree on the fact that the nuclear emission must be suppressed by a 10^25 cm^-2 column density. The host galaxy properties show that this highly obscured AGN is hosted in a massive star-forming galaxy, showing a barred morphology, which is known to correlate with the presence of CT absorbers. Finally, asymmetric and blueshifted components in several optical high-ionization emission lines indicate the presence of a galactic outflow, possibly driven by the intense AGN activity (L(Bol)/L(Edd) = 0.3-0.5). Such highly obscured, highly accreting AGN are intrinsically very rare at low redshift, whereas they are expected to be much more common at the peak of the star formation and BH accretion history, at z~2-3. We demonstrate that a fully multi-wavelength approach can recover a sizable sample of such peculiar sources in large and deep surveys such as COSMOS.
We describe the design and current status of a new X-ray cluster survey aimed at the compilation of a statistically complete sample of very X-ray luminous (and thus, by inference, massive), distant clusters of galaxies. The primary goal of the MAssive Cluster Survey (MACS) is to increase the number of known massive clusters at z>0.3 from a handful to hundreds. Upon completion of the survey, the MACS cluster sample will greatly improve our ability to study quantitatively the physical and cosmological parameters driving cluster evolution at redshifts and luminosities poorly sampled by all existing surveys. To achieve these goals we apply an X-ray flux and X-ray hardness-ratio cut to select distant cluster candidates from the ROSAT Bright Source Catalogue. Starting from a list of more than 5,000 X-ray sources within the survey area of 22,735 square degrees we use positional cross-correlations with public catalogues of Galactic and extragalactic objects, reference to APM colours, visual inspection of Digitized Sky Survey images, extensive CCD imaging, and finally spectroscopic observations with the University of Hawaiis 2.2m and the Keck 10m telescopes to compile the final cluster sample. We discuss in detail the X-ray selection procedure and the resulting selection function, and present model predictions for the number of distant clusters expected to emerge from MACS. At the time of this writing the MACS cluster sample comprises 101 spectroscopically confirmed clusters at 0.3<z<0.6; more than two thirds of these are new discoveries. Our preliminary sample is already 15 times larger than that of the EMSS in the same redshift and X-ray luminosity range.