No Arabic abstract
We describe a recently realized experiment producing the most spherical cavitation bubbles today. The bubbles grow inside a liquid from a point-plasma generated by a nanosecond laser pulse. Unlike in previous studies, the laser is focussed by a parabolic mirror, resulting in a plasma of unprecedented symmetry. The ensuing bubbles are sufficiently spherical that the hydrostatic pressure gradient caused by gravity becomes the dominant source of asymmetry in the collapse and rebound of the cavitation bubbles. To avoid this natural source of asymmetry, the whole experiment is therefore performed in microgravity conditions (ESA, 53rd and 56th parabolic flight campaign). Cavitation bubbles were observed in microgravity (~0g), where their collapse and rebound remain spherical, and in normal gravity (1g) to hyper-gravity (1.8g), where a gravity-driven jet appears. Here, we describe the experimental setup and technical results, and overview the science data. A selection of high-quality shadowgraphy movies and time-resolved pressure data is published online.
The dynamics of spherical laser-induced cavitation bubbles in water is investigated by plasma photography, time-resolved shadowgraphs, and single-shot probe beam scattering enabling to portray the transition from initial nonlinear to late linear oscillations. The frequency of late oscillations yields the bubbles gas content. Simulations with the Gilmore model using plasma size as input and oscillation times as fit parameter provide insights into experimentally not accessible bubble parameters and shock wave emission. The model is extended by a term covering the initial shock-driven acceleration of the bubble wall, an automated method determining shock front position and pressure decay, and an energy balance for the partitioning of absorbed laser energy into vaporization, bubble and shock wave energy, and dissipation through viscosity and condensation. These tools are used for analysing a scattering signal covering 102 oscillation cycles. The bubble was produced by a plasma with 1550 K average temperature and had 36 $mu$m maximum radius. Predicted bubble wall velocities during expansion agree well with experimental data. Upon first collapse, most energy was stored in the compressed liquid around the bubble and then radiated away acoustically. The collapsed bubble contained more vapour than gas, and its pressure was 13.5 GPa. The pressure of the rebound shock wave initially decayed $propto r^{-1.8}$, and energy dissipation at the shock front heated liquid near the bubble wall above the superheat limit. The shock-induced temperature rise reduces damping during late bubble oscillations. Bubble dynamics changes significantly for small bubbles with less than 10 $mu$m radius.
A thorough understanding of the dynamics of meter-sized airgun-bubbles is very crucial to seabed geophysical exploration. In this study, we use the boundary integral method to investigate the highly non-spherical airgun-bubble dynamics and its corresponding pressure wave emission. Moreover, a model is proposed to also consider the process of air release from the airgun port, which is found to be the most crucial factor to estimate the initial peak of the pressure wave. The numerical simulations show good agreement with experiments, in terms of non-spherical bubble shapes and pressure waves. Thereafter, the effects of the port opening time $Trm_{open}$, airgun firing depth, heat transfer, and gravity are numerically investigated. We find that a smaller $Trm_{open}$ leads to a more violent air release that consequently causes stronger high-frequency pressure wave emissions; however, the low-frequency pressure waves are little affected. Additionally, the non-spherical bubble dynamics is highly dependent on the Froude number $Fr$. Starting from $Fr=2$, as $Fr$ increases, the jet contains lower kinetic energy, resulting in a stronger energy focusing of the bubble collapse itself and thus a larger pressure peak during the bubble collapse phase. For $Fr ge 7$, the spherical bubble theory becomes an appropriate description of the airgun-bubble. The new findings of this study may provide a reference for practical operations and designing environmentally friendly airguns in the near future.
The formation of a single bubble from an orifice in a solid surface, submerged in an in- compressible, viscous Newtonian liquid, is simulated. The finite element method is used to capture the multiscale physics associated with the problem and to track the evolution of the free surface explicitly. The results are compared to a recent experimental analysis and then used to obtain the global characteristics of the process, the formation time and volume of the bubble, for a range of orifice radii; Ohnesorge numbers, which combine the material parameters of the liquid; and volumetric gas flow rates. These benchmark calculations, for the parameter space of interest, are then utilised to validate a selection of scaling laws found in the literature for two regimes of bubble formation, the regimes of low and high gas flow rates.
Double-diffusive convection driven by both thermal and compositional buoyancy in a rotating spherical shell can exhibit a rather large number of behaviours often distinct from that of the single diffusive system. In order to understand how the differences in thermal and compositional molecular diffusivities determine the dynamics of thermo-compositional convection we investigate numerically the linear onset of convective instability in a double-diffusive setup. We construct an alternative equivalent formulation of the non-dimensional equations where the linearised double-diffusive problem is described by an effective Rayleigh number, $text{Ra}$, measuring the amplitude of the combined buoyancy driving, and a second parameter, $alpha$, measuring the mixing of the thermal and compositional contributions. This formulation is useful in that it allows for the analysis of several limiting cases and reveals dynamical similarities in the parameters space which are not obvious otherwise. We analyse the structure of the critical curves in this $text{Ra}-alpha$ space, explaining asymptotic behaviours in $alpha$, transitions between inertial and diffusive regimes, and transitions between large scale (fast drift) and small scale (slow drift) convection. We perform this analysis for a variety of diffusivities, rotation rates and shell aspect ratios showing where and when new modes of convection take place.
Some luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) host extremely compact and dusty nuclei. The intense infrared radiation arising from warm dust in these sources is prone to excite vibrational levels of molecules such as HCN. This results in emission from the rotational transitions of vibrationally excited HCN (HCN-vib), with the brightest emission found in compact obscured nuclei (CONs). We aim to establish how common CONs are in the local Universe, and whether their prevalence depends on the luminosity or other properties of the host galaxy. We have conducted an Atacama Large Millimeter/submillimeter Array (ALMA) survey of the rotational J=3-2 transition of HCN-vib in a sample of 46 far-infrared luminous galaxies. Compact obscured nuclei are identified in 38 percent of ULIRGs, 21 percent of LIRGs, and 0 percent of lower luminosity galaxies. We find no dependence on the inclination of the host galaxy, but strong evidence of lower IRAS 25 to 60 {mu}m flux density ratios (f25/f60) in CONs compared to the rest of the sample. Furthermore, we find that CONs have stronger silicate features (s9.7{mu}m) but similar PAH equivalent widths (EQW6.2{mu}m) compared to other galaxies. In the local Universe, CONs are primarily found in (U)LIRGs. High resolution continuum observations of the individual nuclei are required to determine if the CON phenomenon is related to the inclinations of the nuclear disks. The lower f25/f60 ratios in CONs as well as the results for the mid-infrared diagnostics investigated are consistent with large dust columns shifting the nuclear radiation to longer wavelengths, making the mid- and far-infrared photospheres significantly cooler than the interior regions. To assess the importance of CONs in the context of galaxy evolution, it is necessary to extend this study to higher redshifts where (U)LIRGs are more common.