Do you want to publish a course? Click here

PLIERS: A Process that Integrates User-Centered Methods into Programming Language Design

313   0   0.0 ( 0 )
 Added by Michael Coblenz
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Programming language design requires making many usability-related design decisions. However, existing HCI methods can be impractical to apply to programming languages: they have high iteration costs, programmers require significant learning time, and user performance has high variance. To address these problems, we adapted both formative and summative HCI methods to make them more suitable for programming language design. We integrated these methods into a new process, PLIERS, for designing programming languages in a user-centered way. We evaluated PLIERS by using it to design two new programming languages. Glacier extends Java to enable programmers to express immutability properties effectively and easily. Obsidian is a language for blockchains that includes verification of critical safety properties. Summative usability studies showed that programmers were able to program effectively in both languages after short training periods.



rate research

Read More

With the potential of quantum algorithms to solve intractable classical problems, quantum computing is rapidly evolving and more algorithms are being developed and optimized. Expressing these quantum algorithms using a high-level language and making them executable on a quantum processor while abstracting away hardware details is a challenging task. Firstly, a quantum programming language should provide an intuitive programming interface to describe those algorithms. Then a compiler has to transform the program into a quantum circuit, optimize it and map it to the target quantum processor respecting the hardware constraints such as the supported quantum operations, the qubit connectivity, and the control electronics limitations. In this paper, we propose a quantum programming framework named OpenQL, which includes a high-level quantum programming language and its associated quantum compiler. We present the programming interface of OpenQL, we describe the different layers of the compiler and how we can provide portability over different qubit technologies. Our experiments show that OpenQL allows the execution of the same high-level algorithm on two different qubit technologies, namely superconducting qubits and Si-Spin qubits. Besides the executable code, OpenQL also produces an intermediate quantum assembly code (cQASM), which is technology-independent and can be simulated using the QX simulator.
176 - Scott A. Hale 2016
The number of user reviews of tourist attractions, restaurants, mobile apps, etc. is increasing for all languages; yet, research is lacking on how reviews in multiple languages should be aggregated and displayed. Speakers of different languages may have consistently different experiences, e.g., different information available in different languages at tourist attractions or different user experiences with software due to internationalization/localization choices. This paper assesses the similarity in the ratings given by speakers of different languages to London tourist attractions on TripAdvisor. The correlations between different languages are generally high, but some language pairs are more correlated than others. The results question the common practice of computing average ratings from reviews in many languages.
A major trend in academia and data science is the rapid adoption of Bayesian statistics for data analysis and modeling, leading to the development of probabilistic programming languages (PPL). A PPL provides a framework that allows users to easily specify a probabilistic model and perform inference automatically. PyAutoFit is a Python-based PPL which interfaces with all aspects of the modeling (e.g., the model, data, fitting procedure, visualization, results) and therefore provides complete management of every aspect of modeling. This includes composing high-dimensionality models from individual model components, customizing the fitting procedure and performing data augmentation before a model-fit. Advanced features include database tools for analysing large suites of modeling results and exploiting domain-specific knowledge of a problem via non-linear search chaining. Accompanying PyAutoFit is the autofit workspace (see https://github.com/Jammy2211/autofit_workspace), which includes example scripts and the HowToFit lecture series which introduces non-experts to model-fitting and provides a guide on how to begin a project using PyAutoFit. Readers can try PyAutoFit right now by going to the introduction Jupyter notebook on Binder (see https://mybinder.org/v2/gh/Jammy2211/autofit_workspace/HEAD) or checkout our readthedocs(see https://pyautofit.readthedocs.io/en/latest/) for a complete overview of PyAutoFits features.
AI for supporting designers needs to be rethought. It should aim to cooperate, not automate, by supporting and leveraging the creativity and problem-solving of designers. The challenge for such AI is how to infer designers goals and then help them without being needlessly disruptive. We present AI-assisted design: a framework for creating such AI, built around generative user models which enable reasoning about designers goals, reasoning, and capabilities.
While Alexa can perform over 100,000 skills on paper, its capability covers only a fraction of what is possible on the web. To reach the full potential of an assistant, it is desirable that individuals can create skills to automate their personal web browsing routines. Many seemingly simple routines, however, such as monitoring COVID-19 stats for their hometown, detecting changes in their childs grades online, or sending personally-addressed messages to a group, cannot be automated without conventional programming concepts such as conditional and iterative evaluation. This paper presents VASH (Voice Assistant Scripting Helper), a new system that empowers users to create useful web-based virtual assistant skills without learning a formal programming language. With VASH, the user demonstrates their task of interest in the browser and issues a few voice commands, such as naming the skills and adding conditions on the action. VASH turns these multi-modal specifications into skills that can be invoked invoice on a virtual assistant. These skills are represented in a formal programming language we designed called WebTalk, which supports parameterization, function invocation, conditionals, and iterative execution. VASH is a fully working prototype that works on the Chrome browser on real-world websites. Our user study shows that users have many web routines they wish to automate, 81% of which can be expressed using VASH. We found that VASH Is easy to learn, and that a majority of the users in our study want to use our system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا