No Arabic abstract
Recent studies in zero-shot cross-lingual learning using multilingual models have falsified the previous hypothesis that shared vocabulary and joint pre-training are the keys to cross-lingual generalization. Inspired by this advancement, we introduce a cross-lingual transfer method for monolingual models based on domain adaptation. We study the effects of such transfer from four different languages to English. Our experimental results on GLUE show that the transferred models outperform the native English model independently of the source language. After probing the English linguistic knowledge encoded in the representations before and after transfer, we find that semantic information is retained from the source language, while syntactic information is learned during transfer. Additionally, the results of evaluating the transferred models in source language tasks reveal that their performance in the source domain deteriorates after transfer.
Transformers that are pre-trained on multilingual corpora, such as, mBERT and XLM-RoBERTa, have achieved impressive cross-lingual transfer capabilities. In the zero-shot transfer setting, only English training data is used, and the fine-tuned model is evaluated on another target language. While this works surprisingly well, substantial variance has been observed in target language performance between different fine-tuning runs, and in the zero-shot setup, no target-language development data is available to select among multiple fine-tuned models. Prior work has relied on English dev data to select among models that are fine-tuned with different learning rates, number of steps and other hyperparameters, often resulting in suboptimal choices. In this paper, we show that it is possible to select consistently better models when small amounts of annotated data are available in auxiliary pivot languages. We propose a machine learning approach to model selection that uses the fine-tuned models own internal representations to predict its cross-lingual capabilities. In extensive experiments we find that this method consistently selects better models than English validation data across twenty five languages (including eight low-resource languages), and often achieves results that are comparable to model selection using target language development data.
Reverse dictionary is the task to find the proper target word given the word description. In this paper, we tried to incorporate BERT into this task. However, since BERT is based on the byte-pair-encoding (BPE) subword encoding, it is nontrivial to make BERT generate a word given the description. We propose a simple but effective method to make BERT generate the target word for this specific task. Besides, the cross-lingual reverse dictionary is the task to find the proper target word described in another language. Previous models have to keep two different word embeddings and learn to align these embeddings. Nevertheless, by using the Multilingual BERT (mBERT), we can efficiently conduct the cross-lingual reverse dictionary with one subword embedding, and the alignment between languages is not necessary. More importantly, mBERT can achieve remarkable cross-lingual reverse dictionary performance even without the parallel corpus, which means it can conduct the cross-lingual reverse dictionary with only corresponding monolingual data. Code is publicly available at https://github.com/yhcc/BertForRD.git.
Cross-lingual representations of words enable us to reason about word meaning in multilingual contexts and are a key facilitator of cross-lingual transfer when developing natural language processing models for low-resource languages. In this survey, we provide a comprehensive typology of cross-lingual word embedding models. We compare their data requirements and objective functions. The recurring theme of the survey is that many of the models presented in the literature optimize for the same objectives, and that seemingly different models are often equivalent modulo optimization strategies, hyper-parameters, and such. We also discuss the different ways cross-lingual word embeddings are evaluated, as well as future challenges and research horizons.
Syntactic parsing is a highly linguistic processing task whose parser requires training on treebanks from the expensive human annotation. As it is unlikely to obtain a treebank for every human language, in this work, we propose an effective cross-lingual UD parsing framework for transferring parser from only one source monolingual treebank to any other target languages without treebank available. To reach satisfactory parsing accuracy among quite different languages, we introduce two language modeling tasks into dependency parsing as multi-tasking. Assuming only unlabeled data from target languages plus the source treebank can be exploited together, we adopt a self-training strategy for further performance improvement in terms of our multi-task framework. Our proposed cross-lingual parsers are implemented for English, Chinese, and 22 UD treebanks. The empirical study shows that our cross-lingual parsers yield promising results for all target languages, for the first time, approaching the parser performance which is trained in its own target treebank.
Cross-lingual transfer is an effective way to build syntactic analysis tools in low-resource languages. However, transfer is difficult when transferring to typologically distant languages, especially when neither annotated target data nor parallel corpora are available. In this paper, we focus on methods for cross-lingual transfer to distant languages and propose to learn a generative model with a structured prior that utilizes labeled source data and unlabeled target data jointly. The parameters of source model and target model are softly shared through a regularized log likelihood objective. An invertible projection is employed to learn a new interlingual latent embedding space that compensates for imperfect cross-lingual word embedding input. We evaluate our method on two syntactic tasks: part-of-speech (POS) tagging and dependency parsing. On the Universal Dependency Treebanks, we use English as the only source corpus and transfer to a wide range of target languages. On the 10 languages in this dataset that are distant from English, our method yields an average of 5.2% absolute improvement on POS tagging and 8.3% absolute improvement on dependency parsing over a direct transfer method using state-of-the-art discriminative models.