No Arabic abstract
Cross-lingual representations of words enable us to reason about word meaning in multilingual contexts and are a key facilitator of cross-lingual transfer when developing natural language processing models for low-resource languages. In this survey, we provide a comprehensive typology of cross-lingual word embedding models. We compare their data requirements and objective functions. The recurring theme of the survey is that many of the models presented in the literature optimize for the same objectives, and that seemingly different models are often equivalent modulo optimization strategies, hyper-parameters, and such. We also discuss the different ways cross-lingual word embeddings are evaluated, as well as future challenges and research horizons.
Despite interest in using cross-lingual knowledge to learn word embeddings for various tasks, a systematic comparison of the possible approaches is lacking in the literature. We perform an extensive evaluation of four popular approaches of inducing cross-lingual embeddings, each requiring a different form of supervision, on four typographically different language pairs. Our evaluation setup spans four different tasks, including intrinsic evaluation on mono-lingual and cross-lingual similarity, and extrinsic evaluation on downstream semantic and syntactic applications. We show that models which require expensive cross-lingual knowledge almost always perform better, but cheaply supervised models often prove competitive on certain tasks.
Recent studies in zero-shot cross-lingual learning using multilingual models have falsified the previous hypothesis that shared vocabulary and joint pre-training are the keys to cross-lingual generalization. Inspired by this advancement, we introduce a cross-lingual transfer method for monolingual models based on domain adaptation. We study the effects of such transfer from four different languages to English. Our experimental results on GLUE show that the transferred models outperform the native English model independently of the source language. After probing the English linguistic knowledge encoded in the representations before and after transfer, we find that semantic information is retained from the source language, while syntactic information is learned during transfer. Additionally, the results of evaluating the transferred models in source language tasks reveal that their performance in the source domain deteriorates after transfer.
The cross-lingual language models are typically pretrained with masked language modeling on multilingual text or parallel sentences. In this paper, we introduce denoising word alignment as a new cross-lingual pre-training task. Specifically, the model first self-labels word alignments for parallel sentences. Then we randomly mask tokens in a bitext pair. Given a masked token, the model uses a pointer network to predict the aligned token in the other language. We alternately perform the above two steps in an expectation-maximization manner. Experimental results show that our method improves cross-lingual transferability on various datasets, especially on the token-level tasks, such as question answering, and structured prediction. Moreover, the model can serve as a pretrained word aligner, which achieves reasonably low error rates on the alignment benchmarks. The code and pretrained parameters are available at https://github.com/CZWin32768/XLM-Align.
We introduce a novel method for multilingual transfer that utilizes deep contextual embeddings, pretrained in an unsupervised fashion. While contextual embeddings have been shown to yield richer representations of meaning compared to their static counterparts, aligning them poses a challenge due to their dynamic nature. To this end, we construct context-independent variants of the original monolingual spaces and utilize their mapping to derive an alignment for the context-dependent spaces. This mapping readily supports processing of a target language, improving transfer by context-aware embeddings. Our experimental results demonstrate the effectiveness of this approach for zero-shot and few-shot learning of dependency parsing. Specifically, our method consistently outperforms the previous state-of-the-art on 6 tested languages, yielding an improvement of 6.8 LAS points on average.
Generative adversarial networks (GANs) have succeeded in inducing cross-lingual word embeddings -- maps of matching words across languages -- without supervision. Despite these successes, GANs performance for the difficult case of distant languages is still not satisfactory. These limitations have been explained by GANs incorrect assumption that source and target embedding spaces are related by a single linear mapping and are approximately isomorphic. We assume instead that, especially across distant languages, the mapping is only piece-wise linear, and propose a multi-adversarial learning method. This novel method induces the seed cross-lingual dictionary through multiple mappings, each induced to fit the mapping for one subspace. Our experiments on unsupervised bilingual lexicon induction show that this method improves performance over previous single-mapping methods, especially for distant languages.