Do you want to publish a course? Click here

Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits

128   0   0.0 ( 0 )
 Added by Junqiu Liu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nonlinear photonics based on integrated circuits has enabled applications such as parametric amplifiers, soliton frequency combs, supercontinua, and non-reciprocal devices. Ultralow optical loss and the capability for dispersion engineering are essential, which necessitate the use of multi-mode waveguides. Despite that rich interaction among different spatial waveguide eigenmodes can give rise to novel nonlinear phenomena, spatial mode interaction is typically undesired as it increases optical loss, perturbs local dispersion profile, and impedes soliton formation. Adiabatic bends, such as Euler bends whose curvature varies linearly with their path length, have been favoured to suppress spatial mode interaction. Adiabatic bends can essentially connect any two waveguide segments with adiabatic mode conversion, thus efficiently avoid mode mixing due to mode mismatch. However, previous works lack quantitative measurement data and analysis to fairly evaluate the adiabaticity, and are not based on photonic integrated circuits with tight optical confinement and optical losses of few dB/m. Here, we adapt, optimize, and implement Euler bends to build compact racetrack microresonators based on ultralow-loss, multi-mode, silicon nitride photonic integrated circuits. The racetrack microresonators feature a small footprint of only 0.21 mm^2 for 19.8 GHz FSR. We quantitatively investigate the suppression of spatial mode interaction in the racetrack microresonators with Euler bends. We show that the optical loss rate (15.5 MHz) is preserved, on par with the mode interaction strength (25 MHz). This results in an unperturbed microresonator dispersion profile. We further demonstrate single soliton of 19.8 GHz repetition rate. The optimized Euler bends and racetrack microresonators can be key building blocks for integrated nonlinear photonic systems, programmable processors and photonic quantum computing.



rate research

Read More

161 - Zejie Yu , Xiang Xi , Jingwen Ma 2019
Waves that are perfectly confined in the continuous spectrum of radiating waves without interaction with them are known as bound states in the continuum (BICs). Despite recent discoveries of BICs in nanophotonics, full routing and control of BICs are yet to be explored. Here, we experimentally demonstrate BICs in a fundamentally new photonic architecture by patterning a low-refractive-index material on a high-refractive-index substrate, where dissipation to the substrate continuum is eliminated by engineering the geometric parameters. Pivotal BIC-based photonic components are demonstrated, including waveguides, microcavities, directional couplers, and modulators. Therefore, this work presents the critical step of photonic integrated circuits in the continuum, and enables the exploration of new single-crystal materials on an integrated photonic platform without the fabrication challenges of patterning the single-crystal materials. The demonstrated lithium niobate platform will facilitate development of functional photonic integrated circuits for optical communications, nonlinear optics at the single photon level as well as scalable photonic quantum information processors.
Monolayer transition metal dichalcogenides with direct bandgaps are emerging candidates for microelectronics, nano-photonics, and optoelectronics. Transferred onto photonic integrated circuits (PICs), these semiconductor materials have enabled new classes of light-emitting diodes, modulators and photodetectors, that could be amenable to wafer-scale manufacturing. For integrated photonic devices, the optical losses of the PICs are critical. In contrast to silicon, silicon nitride (Si3N4) has emerged as a low-loss integrated platform with a wide transparency window from ultraviolet to mid-infrared and absence of two-photon absorption at telecommunication bands. Moreover, it is suitable for nonlinear integrated photonics due to its high Kerr nonlinearity and high-power handing capability. These features of Si3N4 are intrinsically beneficial for nanophotonics and optoelectronics applications. Here we report a low-loss integrated platform incorporating monolayer molybdenum ditelluride (1L-MoTe2) with Si3N4 photonic microresonators. We show that, with the 1L-MoTe2, microresonator quality factors exceeding 3 million in the telecommunication O-band to E-band are maintained. We further investigate the change of microresonator dispersion and resonance shift due to the presence of 1L-MoTe2, and extrapolate the optical loss introduced by 1L-MoTe2 in the telecommunication bands, out of the excitonic transition region. Our work presents a key step for low-loss, hybrid PICs with layered semiconductors without using heterogeneous wafer bonding.
Future quantum computation and networks require scalable monolithic circuits, which incorporate various advanced functionalities on a single physical substrate. Although substantial progress for various applications has already been demonstrated on different platforms, the range of diversified manipulation of photonic states on demand on a single chip has remained limited, especially dynamic time management. Here, we demonstrate an electro-optic device, including photon pair generation, propagation, electro-optical path routing, as well as a voltage-controllable time delay of up to ~ 12 ps on a single Ti:LIbO3 waveguide chip. As an example, we demonstrate Hong-Ou-Mandel interference with a visibility of more than 93$pm$ 1.8%. Our chip not only enables the deliberate manipulation of photonic states by rotating the polarization but also provides precise time control. Our experiment reveals that we have full flexible control over single-qubit operations by harnessing the complete potential of fast on-chip electro-optic modulation.
Laser-frequency stabilization with on-chip photonic integrated circuits will provide compact, low cost solutions to realize spectrally pure laser sources. Developing high-performance and scalable lasers is critical for applications including quantum photonics, precision navigation and timing, spectroscopy, and high-capacity fiber communications. We demonstrate a significant advance in compact, stabilized lasers to achieve a record low integral emission linewidth and precision carrier stabilization by combining integrated waveguide nonlinear Brillouin and ultra-low loss waveguide reference resonators. Using a pair of 56.4 Million quality factor (Q) Si$_3$N$_4$ waveguide ring-resonators, we reduce the free running Brillouin laser linewidth by over an order of magnitude to 330 Hz integral linewidth and stabilize the carrier to 6.5$times$10$^{-13}$ fractional frequency at 8 ms, reaching the cavity-intrinsic thermorefractive noise limit for frequencies down to 80 Hz. This work demonstrates the lowest linewidth and highest carrier stability achieved to date using planar, CMOS compatible photonic integrated resonators, to the best of our knowledge. These results pave the way to transfer stabilized laser technology from the tabletop to the chip-scale. This advance makes possible scaling the number of stabilized lasers and complexity of atomic and molecular experiments as well as reduced sensitivity to environmental disturbances and portable precision atomic, molecular and optical (AMO) solutions.
Low propagation loss in high confinement waveguides is critical for chip-based nonlinear photonics applications. Sophisticated fabrication processes which yield sub-nm roughness are generally needed to reduce scattering points at the waveguide interfaces in order to achieve ultralow propagation loss. Here, we show ultralow propagation loss by shaping the mode using a highly multimode structure to reduce its overlap with the waveguide interfaces, thus relaxing the fabrication processing requirements. Microresonators with intrinsic quality factors (Q) of 31.8 $pm$ 4.4 million are experimentally demonstrated. Although the microresonators support 10 transverse modes only the fundamental mode is excited and no higher order modes are observed when using nonlinear adiabatic bends. A record-low threshold pump power of 73 $mu$W for parametric oscillation is measured and a broadband, almost octave spanning single-soliton frequency comb without any signatures of higher order modes in the spectrum spanning from 1097 nm to 2040 nm (126 THz) is generated in the multimode microresonator. This work provides a design method that could be applied to different material platforms to achieve and use ultrahigh-Q multimode microresonators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا