Do you want to publish a course? Click here

Exploiting Ultralow Loss Multimode Waveguides for Broadband Frequency Combs

70   0   0.0 ( 0 )
 Added by Xingchen Ji
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Low propagation loss in high confinement waveguides is critical for chip-based nonlinear photonics applications. Sophisticated fabrication processes which yield sub-nm roughness are generally needed to reduce scattering points at the waveguide interfaces in order to achieve ultralow propagation loss. Here, we show ultralow propagation loss by shaping the mode using a highly multimode structure to reduce its overlap with the waveguide interfaces, thus relaxing the fabrication processing requirements. Microresonators with intrinsic quality factors (Q) of 31.8 $pm$ 4.4 million are experimentally demonstrated. Although the microresonators support 10 transverse modes only the fundamental mode is excited and no higher order modes are observed when using nonlinear adiabatic bends. A record-low threshold pump power of 73 $mu$W for parametric oscillation is measured and a broadband, almost octave spanning single-soliton frequency comb without any signatures of higher order modes in the spectrum spanning from 1097 nm to 2040 nm (126 THz) is generated in the multimode microresonator. This work provides a design method that could be applied to different material platforms to achieve and use ultrahigh-Q multimode microresonators.



rate research

Read More

High-harmonic generation (HHG) provides short-wavelength light that is useful for precision spectroscopy and probing ultrafast dynamics. We report efficient, phase-coherent harmonic generation up to 9th-order (333 nm) in chirped periodically poled lithium niobate waveguides driven by phase-stable $leq$12-nJ, 100 fs pulses at 3 $mu$m with 100 MHz repetition rate. A mid-infrared to ultraviolet-visible conversion efficiency as high as 10% is observed, amongst an overall 23% conversion of the fundamental to all harmonics. We verify the coherence of the harmonic frequency combs despite the complex highly nonlinear process. Numerical simulations based on a single broadband envelope equation with quadratic nonlinearity give estimates for the conversion efficiency within approximately 1 order of magnitude over a wide range of experimental parameters. From this comparison we identify a dimensionless parameter capturing the competition between three-wave mixing and group-velocity walk-off of the harmonics that governs the cascaded HHG physics. These results can inform cascaded HHG in a range of different platforms.
Nanophotonic waveguides with sub-wavelength mode confinement and engineered dispersion profiles are an excellent platform for application-tailored nonlinear optical interactions at low pulse energies. Here, we present fully air clad suspended-silicon waveguides for infrared frequency comb generation with optical bandwidth limited only by the silicon transparency. The achieved spectra are lithographically tailored to span 2.1 octaves in the mid-infrared (2.0-8.5 um or 1170--5000 cm-1) when pumped at 3.10 um with 100 pJ pulses. Novel fork-shaped couplers provide efficient input coupling with only 1.5 dB loss. The coherence, brightness, and the stability of the generated light are highlighted in a dual frequency comb setup in which individual comb-lines are resolved with 30 dB extinction ratio and 100 MHz spacing in the wavelength range of 4.8-8.5 um (2100-1170 cm-1). These sources are used for broadband gas- and liquid-phase dual-comb spectroscopy with 100 MHz comb-line resolution. We achieve a peak spectral signal-to-noise ratio of 10 Hz^0.5 across a simultaneous bandwidth containing 112,200 comb-lines. These results provide a pathway to further integration with the developing high repetition rate frequency comb lasers for compact sensors with applications in chip-based chemical analysis and spectroscopy.
Broadband low loss and ultra-low crosstalk waveguide crossings are a crucial component for photonic integrated circuits to allow a higher integration density of functional components and an increased flexibility in the layout. We report the design of optimized silicon nitride waveguide crossings based on multimode interferometer structures for intersecting light paths of TE/TE-like, TM/TM-like and TE/TM-like polarized light in the near infrared wavelength region of 790 nm to 890 nm. The crossing design for diverse polarization modes facilitates dual polarization operation on a single chip. For all configurations the loss of a single crossing was measured to be 0.05 dB at 840 nm. Within the 100 nm bandwidth losses stayed below 0.16 dB. The crosstalk was estimated to be on the order of -60 dB by means of 3D finite difference time domain simulations.
We present homogeneous quantum cascade lasers (QCLs) emitting around 3 THz which display bandwidths up to 950 GHz with a single stable beatnote. Devices are spontaneously operating in a harmonic comb state, and when in a dense mode regime they can be injection locked at the cavity roundtrip frequency with very small RF powers down to -55 dBm. When operated in the electrically unstable region of negative differential resistance, the device displays ultra-broadband operation exceeding 1.83 THz ($Delta f/f=50%$) with high phase noise, exhibiting self-sustained, periodic voltage oscillations. The low CW threshold (115 A$cdot$ cm$^{-2}$) and broadband comb operation ($Delta f/f=25%$) make these sources extremely appealing for on-chip frequency comb applications.
Frequency combs, broadband light sources whose spectra consist of coherent, discrete modes, have become essential in many fields. Miniaturizing frequency combs would be a significant advance in these fields, enabling the deployment of frequency-comb based devices for diverse measurement and spectroscopy applications. We demonstrate diode-laser based frequency comb generators. These laser diodes are simple, electrically pumped, inexpensive and readily manufactured. Each chip contains several dozen diode-laser combs. We measure the time-domain output of a diode frequency comb to reveal the underlying frequency dynamics responsible for the comb spectrum, conduct dual comb spectroscopy of a molecular gas with two devices on the same chip, and demonstrate that these combs can be battery powered.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا