We show that the contact dynamics obtained from the Herglotz variational principle can be described as a constrained nonholonomic or vakonomic ordinary Lagrangian system depending on a dissipative variable with an adequate choice of one constraint. As a consequence we obtain the dynamics of contact nonholonomic and vakonomic systems as ordinary variational calculus with constraints on a Lagrangian with a dissipative variable. The variation of the energy and the other dissipative quantities are also obtained giving the usual results.
We review the Dirac formalism for dealing with constraints in a canonical Hamiltonian formulation and discuss gauge freedom and display constraints for gauge theories in a general context. We introduce the Dirac bracket and show that it provides a consistent method to remove any gauge freedom present. We discuss stability in evolution of gauge theories and show that fixing all gauge freedom is sufficient to ensure well-posedness for a large class of gauge theories. Electrodynamics provides examples of the methods outlined for general gauge theories. Future work will apply the formalism, and results derived here, to General Relativity.
The small oscillations of an arbitrary scleronomous system subject to time-independent non dissipative forces are discussed. The linearized equations of motion are solved by quadratures. As in the conservative case, the general integral is shown to consist of a superposition of harmonic oscillations. A complexification of the resolving algorithm is presented.
We introduce a version of the Hamiltonian formalism based on the Clairaut equation theory, which allows us a self-consistent description of systems with degenerate (or singular) Lagrangian. A generalization of the Legendre transform to the case, when the Hessian is zero is done using the mixed (envelope/general) solutions of the multidimensional Clairaut equation. The corresponding system of equations of motion is equivalent to the initial Lagrange equations, but contains nondynamical momenta and unresolved velocities. This system is reduced to the physical phase space and presented in the Hamiltonian form by introducing a new (non-Lie) bracket.
In previous papers, a geometric framework has been developed to describe non-conservative field theories as a kind of modified Lagrangian and Hamiltonian field theories. This approach is that of $k$-contact Hamiltonian systems, which is based on the $k$-symplectic formulation of field theories as well as on contact geometry. In this work we present the Skinner--Rusk unified setting for these kinds of theories, which encompasses both the Lagrangian and Hamiltonian formalisms into a single picture. This unified framework is specially useful when dealing with singular systems, since: (i) it incorporates in a natural way the second-order condition for the solutions of field equations, (ii) it allows to implement the Lagrangian and Hamiltonian constraint algorithms in a unique simple way, and (iii) it gives the Legendre transformation, so that the Lagrangian and the Hamiltonian formalisms are obtained straightforwardly. We apply this description to several interesting physical examples: the damped vibrating string, the telegraphers equations, and Maxwells equations with dissipation terms.
Mechanical systems (i.e., one-dimensional field theories) with constraints are the focus of this paper. In the classical theory, systems with infinite-dimensional targets are considered as well (this then encompasses also higher-dimensional field theories in the hamiltonian formalism). The properties of the Hamilton-Jacobi (HJ) action are described in details and several examples are explicitly computed (including nonabelian Chern-Simons theory, where the HJ action turns out to be the gauged Wess-Zumino-Witten action). Perturbative quantization, limited in this note to finite-dimensional targets, is performed in the framework of the Batalin-Vilkovisky (BV) formalism in the bulk and of the Batalin-Fradkin-Vilkovisky (BFV) formalism at the endpoints. As a sanity check of the method, it is proved that the semiclassical contribution of the physical part of the evolution operator is still given by the HJ action. Several examples are computed explicitly. In particular, it is shown that the toy model for nonabelian Chern-Simons theory and the toy model for 7D Chern-Simons theory with nonlinear Hitchin polarization do not have quantum corrections in the physical part (the extension of these results to the actual cases is discussed in the companion paper [arXiv:2012.13983]). Background material for both the classical part (symplectic geometry, generalized generating functions, HJ actions, and the extension of these concepts to infinite-dimensional manifolds) and the quantum part (BV-BFV formalism) is provided.