Do you want to publish a course? Click here

Constrained systems, generalized Hamilton-Jacobi actions, and quantization

284   0   0.0 ( 0 )
 Added by Alberto S. Cattaneo
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Mechanical systems (i.e., one-dimensional field theories) with constraints are the focus of this paper. In the classical theory, systems with infinite-dimensional targets are considered as well (this then encompasses also higher-dimensional field theories in the hamiltonian formalism). The properties of the Hamilton-Jacobi (HJ) action are described in details and several examples are explicitly computed (including nonabelian Chern-Simons theory, where the HJ action turns out to be the gauged Wess-Zumino-Witten action). Perturbative quantization, limited in this note to finite-dimensional targets, is performed in the framework of the Batalin-Vilkovisky (BV) formalism in the bulk and of the Batalin-Fradkin-Vilkovisky (BFV) formalism at the endpoints. As a sanity check of the method, it is proved that the semiclassical contribution of the physical part of the evolution operator is still given by the HJ action. Several examples are computed explicitly. In particular, it is shown that the toy model for nonabelian Chern-Simons theory and the toy model for 7D Chern-Simons theory with nonlinear Hitchin polarization do not have quantum corrections in the physical part (the extension of these results to the actual cases is discussed in the companion paper [arXiv:2012.13983]). Background material for both the classical part (symplectic geometry, generalized generating functions, HJ actions, and the extension of these concepts to infinite-dimensional manifolds) and the quantum part (BV-BFV formalism) is provided.



rate research

Read More

In this paper we outline the construction of semiclassical eigenfunctions of integrable models in terms of the semiclassical path integral for the Poisson sigma model with the target space being the phase space of the integrable system. The semiclassical path integral is defined as a formal power series with coefficients being Feynman diagrams. We also argue that in a similar way one can obtain irreducible semiclassical representations of Kontsevichs star product.
We introduce two remarkable identities written in terms of single commutators and anticommutators for any three elements of arbitrary associative algebra. One is a consequence of other (fundamental identity). From the fundamental identity, we derive a set of four identities (one of which is the Jacobi identity) represented in terms of double commutators and anticommutators. We establish that two of the four identities are independent and show that if the fundamental identity holds for an algebra, then the multiplication operation in that algebra is associative. We find a generalization of the obtained results to the super case and give a generalization of the fundamental identity in the case of arbitrary elements. For nondegenerate even symplectic (super)manifolds, we discuss analogues of the fundamental identity.
In this work we study the theory of linearized gravity via the Hamilton-Jacobi formalism. We make a brief review of this theory and its Lagrangian description, as well as a review of the Hamilton-Jacobi approach for singular systems. Then we apply this formalism to analyze the constraint structure of the linearized gravity in instant and front-form dynamics.
We review the Dirac formalism for dealing with constraints in a canonical Hamiltonian formulation and discuss gauge freedom and display constraints for gauge theories in a general context. We introduce the Dirac bracket and show that it provides a consistent method to remove any gauge freedom present. We discuss stability in evolution of gauge theories and show that fixing all gauge freedom is sufficient to ensure well-posedness for a large class of gauge theories. Electrodynamics provides examples of the methods outlined for general gauge theories. Future work will apply the formalism, and results derived here, to General Relativity.
We consider the variation of the surface spanned by closed strings in a spacetime manifold. Using the Nambu-Goto string action, we induce the geodesic surface equation, the geodesic surface deviation equation which yields a Jacobi field, and we define the index form of a geodesic surface as in the case of point particles to discuss conjugate strings on the geodesic surface.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا