No Arabic abstract
We review the Dirac formalism for dealing with constraints in a canonical Hamiltonian formulation and discuss gauge freedom and display constraints for gauge theories in a general context. We introduce the Dirac bracket and show that it provides a consistent method to remove any gauge freedom present. We discuss stability in evolution of gauge theories and show that fixing all gauge freedom is sufficient to ensure well-posedness for a large class of gauge theories. Electrodynamics provides examples of the methods outlined for general gauge theories. Future work will apply the formalism, and results derived here, to General Relativity.
We show that the contact dynamics obtained from the Herglotz variational principle can be described as a constrained nonholonomic or vakonomic ordinary Lagrangian system depending on a dissipative variable with an adequate choice of one constraint. As a consequence we obtain the dynamics of contact nonholonomic and vakonomic systems as ordinary variational calculus with constraints on a Lagrangian with a dissipative variable. The variation of the energy and the other dissipative quantities are also obtained giving the usual results.
We implement the metric-independent Fock-Schwinger gauge in the abelian quantum Chern-Simons field theory defined in ${mathbb R}^3$. The expressions of the various components of the propagator are determined. Although the gauge field propagator differs from the Gauss linking density, we prove that its integral along two oriented knots is equal to the linking number.
Mechanical systems (i.e., one-dimensional field theories) with constraints are the focus of this paper. In the classical theory, systems with infinite-dimensional targets are considered as well (this then encompasses also higher-dimensional field theories in the hamiltonian formalism). The properties of the Hamilton-Jacobi (HJ) action are described in details and several examples are explicitly computed (including nonabelian Chern-Simons theory, where the HJ action turns out to be the gauged Wess-Zumino-Witten action). Perturbative quantization, limited in this note to finite-dimensional targets, is performed in the framework of the Batalin-Vilkovisky (BV) formalism in the bulk and of the Batalin-Fradkin-Vilkovisky (BFV) formalism at the endpoints. As a sanity check of the method, it is proved that the semiclassical contribution of the physical part of the evolution operator is still given by the HJ action. Several examples are computed explicitly. In particular, it is shown that the toy model for nonabelian Chern-Simons theory and the toy model for 7D Chern-Simons theory with nonlinear Hitchin polarization do not have quantum corrections in the physical part (the extension of these results to the actual cases is discussed in the companion paper [arXiv:2012.13983]). Background material for both the classical part (symplectic geometry, generalized generating functions, HJ actions, and the extension of these concepts to infinite-dimensional manifolds) and the quantum part (BV-BFV formalism) is provided.
We make a critical review of the semiclassical interpretation of quantum cosmology and emphasise that it is not necessary to consider that a concept of time emerges only when the gravitational field is (semi)classical. We show that the usual results of the semiclassical interpretation, and its generalisation known as the Born-Oppenheimer approach to quantum cosmology, can be obtained by gauge fixing, both at the classical and quantum levels. By `gauge fixing we mean a particular choice of the time coordinate, which determines the arbitrary Lagrange multiplier that appears in Hamiltons equations. In the quantum theory, we adopt a tentative definition of the (Klein-Gordon) inner product, which is positive definite for solutions of the quantum constraint equation found via an iterative procedure that corresponds to a weak coupling expansion in powers of the inverse Planck mass. We conclude that the wave function should be interpreted as a state vector for both gravitational and matter degrees of freedom, the dynamics of which is unitary with respect to the chosen inner product and time variable.
We consider a construction of observables by using methods of supersymmetric field theories. In particular, we give an extension of AKSZ-type observables using the Batalin-Vilkovisky structure of AKSZ theories to a formal global version with methods of formal geometry. We will consider the case where the AKSZ theory is split which will give an explicit construction for formal vector fields on base and fiber within the formal global action. Moreover, we consider the example of formal global generalized Wilson surface observables whose expectation values are invariants of higher-dimensional knots by using $BF$ field theory. These constructions give rise to interesting global gauge conditions such as the differential Quantum Master Equation and further extensions.